Cho phương trình: x2 + 5x + m – 2 = 0 (m là tham số).
a) Giải phương trình khi m = - 4.
b) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thoả mãn: \(x_1^2+x_2^2-2x_1=25+2x_2\)
Cho phương trình : x2+2(m-1)x-2m-3=0 ( m là tham số )
a. Chứng minh phương trình luôn có 2 nghiệm x1;x2 với mọi m thuộc R
b. Tìm giá trị của m sao cho (4x1+5)(4x2+5)+19=0
Bài 1. Giải phương trình :
\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)
Bài 2. Tìm tất cả các bộ 3 số nguyên không âm (x ; y; z) thoả mãn đẳng thức :
\(2012^x+2013^y=2014^z\)
Bài 3. Cho phương trình bậc hai : \(x^2+\left(m+n\right)+m+1=0\) với m và n là các số nguyên trong đó \(m\ne1\).
a) Chứng minh rằng : Với mọi giá trị của m, luôn có 1 giá trị của n không đổi để phương trình đã cho có nghiệm x nguyên.
b) Chứng minh rằng : Khi phương trình đã cho có hai nghiệm nguyên thì \(\left(m+n\right)^2+m^2\) là hợp số.
HELP MEEEEEEEEEEEEEEEE !!! PLEASE !!!
Câu 1: Xét phương trình x2-m2x+2m+2=0 ( ẩn số x). Tìm giá trị nguyên dương của m để phương trình có nghiệm nguyên dương.
Câu 2: Cho 3 số nguyên dương a, b, c thỏa mãn 0≤a≤b≤c≤1. Tìm giá trị lớn nhất của biểu thức:\(\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
Cho phương trình x2 - mx + 2m - 5 = 0 . Tìm m để phương trình có nghiệm x1 ; x2 thỏa mãn A = \(\frac{x_1.x_2}{x_1+x_2+2}\) có giá trị nguyên .
Bài 2 : Cho đường thẳng (d) : y = ( m - 2 )x + m +3 .
a, Tìm giá trị của m để các đường thẳng ( d1) : y = -x + 2 , (d2 ) : y = 2x - 1 và đường thẳng (d) đồng quy
b, Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi m .
Mn ơi mn giải giúp em với ạ ! em cảm ơn ạ
Gọi x1, x2 là nghiệm của phương trình ( k - 1) x2 - 2kx +k -4=0
Không giải phương trình tìm mối liên hệ x1 và x2 không phụ thuộc vào k
cho phương trình \(x^2-\left(m+5\right)x+3m+6=0\) (x là ẩn số)
a) CMR: phương trình luôn nghiệm vs mọi số thực m
b) tìm m để phương trình có hai nghiệm x1, x2 là độ dài 2 cạnh góc vuông của 1 tam giác vuông có độ dài cạnh huyền bằng 5
Cho phương trình bậc hai \(x^2-\left(2m-1\right)x+m^2-1=0\)(tham số m)
1, Tìm m để pt có 2 nghiệm phân biệt
2, Xác định m để 2 nghiệm x1, x2 của phương trình thoả mãn \(\left(x_1-x_2\right)^2=x_1-3x_2\)
1. Cho phương trình \(x^2-\left(2m+1\right)x+m^2+m-6=0\).
Tìm m để phương trình có 2 nghiệm \(x_1,x_2\) thoả mãn \(\left|x_1^3-x_2^3\right|=50\)