Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vân Trần Thị

Cho phương trình \(x^2-2mx+2m^2-1=0\)(m là tham số). Để phương trình có nghiệm x1, x2 thỏa mãn \(\left(x_1\right)^3+\left(x_2\right)^3-\left(x_1\right)^2-\left(x_2\right)^2=-2\)thì m = ...

Nguyễn Việt Lâm
27 tháng 4 2019 lúc 18:41

Gọi \(a=x_1\)\(b=x_2\) gõ cho lẹ

\(\Delta'=m^2-2m^2+1=1-m^2\ge0\Rightarrow-1\le m\le1\)

Theo Viet ta có: \(\left\{{}\begin{matrix}a+b=2m\\ab=2m^2-1\end{matrix}\right.\)

\(A=a^3+b^3-\left(a^2+b^2\right)=\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^2+2ab\)

\(A=8m^3-6m\left(2m^2-1\right)-4m^2+2\left(2m^2-1\right)\)

\(A=-4m^3+6m-2=-2\)

\(\Leftrightarrow4m^3-6m=0\)

\(\Leftrightarrow2m\left(2m^2-3\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-\frac{\sqrt{6}}{2}< -1\left(l\right)\\m=\frac{\sqrt{6}}{2}>1\left(l\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn Thế Hiếu
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
ngọc linh
Xem chi tiết
Vân Trần Thị
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
nguyen ngoc son
Xem chi tiết