Gọi \(a=x_1\) và \(b=x_2\) gõ cho lẹ
\(\Delta'=m^2-2m^2+1=1-m^2\ge0\Rightarrow-1\le m\le1\)
Theo Viet ta có: \(\left\{{}\begin{matrix}a+b=2m\\ab=2m^2-1\end{matrix}\right.\)
\(A=a^3+b^3-\left(a^2+b^2\right)=\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^2+2ab\)
\(A=8m^3-6m\left(2m^2-1\right)-4m^2+2\left(2m^2-1\right)\)
\(A=-4m^3+6m-2=-2\)
\(\Leftrightarrow4m^3-6m=0\)
\(\Leftrightarrow2m\left(2m^2-3\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-\frac{\sqrt{6}}{2}< -1\left(l\right)\\m=\frac{\sqrt{6}}{2}>1\left(l\right)\end{matrix}\right.\)