\(\Delta'=m^2+2m+1-m+4=m^2+m+5>0\) \(\forall m\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m-4\end{matrix}\right.\)
\(A=\left|x_1-x_2\right|\ge0\)
\(A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(A^2=\left(2m+2\right)^2-4\left(m-4\right)\)
\(A^2=4m^2+4m+20\)
\(A^2=\left(2m+1\right)^2+19\ge19\)
\(\Rightarrow A_{min}=\sqrt{19}\) khi \(m=-\frac{1}{2}\)