\(\Delta'=\left(m+1\right)^2-m+4=m^2+m+5>0\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m-4\end{matrix}\right.\)
\(M=\frac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{-24}{4\left(m+1\right)^2-8\left(m-4\right)}\)
\(M=\frac{-6}{m^2+9}\ge\frac{-6}{0+9}=-\frac{2}{3}\)
\(M_{min}=-\frac{2}{3}\) khi \(m=0\)