pt (1) có \(\Delta'\)= (-m)2-m+2= m2-2.\(\dfrac{1}{2}\).m + \(\dfrac{1}{4}-\dfrac{1}{4}\)+2 = ( m-\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}\)
nhận thấy : ( m-\(\dfrac{1}{2}\))2 \(\ge\)0\(\forall\)m
==> ( m-\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}\)\(\ge\)\(\dfrac{7}{4}\)>0
==> \(\Delta'\)>0 ==> pt (1) luôn có 2 nghiệm phân biệt
theo hệ thức vi ét ta có :\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=-2\end{matrix}\right.\)(2)
mà M=\(\dfrac{-24}{x1^2+x2^2-6x1x2}=\dfrac{-24}{\left(x1+x2\right)^2-8x1.x2}\)
thay (2) vào M ta đc M=\(\dfrac{-24}{\left(2m\right)^2-8\left(m-2\right)}=\dfrac{-24}{4m^2-8m+16}=\dfrac{-24}{\left(4m^2-8m+4\right)+12}=\dfrac{-24}{\left(2m-2\right)^2+12}\)
nhận thấy (2m-2)2+12 \(\ge\)12
==> M \(\ge\)-2
dấu ''=,, xảy ra <=> m=1
vậy.......................