\(\Delta'=\left(m-1\right)^2-m+2=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\) \(\forall m\)
Phương trình luôn có 2 nghiệm pb thỏa mãn \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-2\end{matrix}\right.\)
\(A=2x_1^2+2x_2^2+4x_1x_2-4x_1x_2+x_1x_2\)
\(A=2\left(x_1+x_2\right)^2-3x_1x_2\)
\(A=8\left(m-1\right)^2-3\left(m-2\right)\)
\(A=8m^2-19m+14\)
\(A=8\left(x^2-2.\frac{19}{16}m+\frac{361}{256}\right)+\frac{87}{32}\)
\(A=8\left(x-\frac{19}{16}\right)^2+\frac{87}{32}\ge\frac{87}{32}\)
\(\Rightarrow A_{min}=\frac{87}{32}\) khi \(x=\frac{19}{16}\)