\(\Leftrightarrow2x^2+\left(cosa-2\right)x-sin^2a=0\)
\(ac=-2sin^2a\le0;\forall a\Rightarrow\) pt luôn có 2 nghiệm thỏa mãn:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{2-cosa}{2}\\x_1x_2=-\frac{sin^2a}{2}\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=1-cosa+\frac{cos^2a}{4}+sin^2a\)
\(=\frac{cos^2a}{4}-cosa+1+1-cos^2a\)
\(=-\frac{3}{4}cos^2a-cosa+2\)
\(=-\frac{3}{4}\left(cosa+\frac{2}{3}\right)^2+\frac{7}{3}\le\frac{7}{3}\)
\(A_{max}=\frac{7}{3}\) khi \(cosa=-\frac{2}{3}\)