Tìm giá trị của tham số \(m\) để phương trình \(4^x-2m.2^x+2m=0\) có hai nghiệm phân biệt \(x_1,x_2\) thỏa \(x_1+x_2=2\)
Tìm các giá trị của tham số \(m\) để phương trình \(\left(\log_3x\right)^2-m\log_3x+2m-7=0\) có hai nghiệm thực \(x_1;x_2\) thỏa \(x_1.x_2=81\)
Tìm m để phương trình \(log_{^{ }3}^2x-log_3x^2+3-m=0\) có nghiệm x\(\in\)[1;27]
giúp với ạ
Có bao nhiêu giá trị nguyên của m với m >1 sao cho tồn tại số thực x thỏa mãn:
(m\(log_5x\) +3)\(log_5m\) = x -3
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ (dưới bình luận). Tìm tất cả các giá trị của tham số m để hàm số y= \(\left|f^2\left(x\right)-4f\left(x\right)+m\right|\) có 7 điểm cực trị (giải theo phương pháp ghép trục)
Tìm tập nghiệm S của bất phương trình 5x-1 _1/5>0
Tìm tập nghiệm S của phương trình log2(x–1) + log2(x+1) = 3
Cho pt mũ : m.3^(x^2 -3x+2) + 3^(4-x^2)= 3^(6-3x) + m .tìm m để pt có đúng 3 nghiệm thực
giúp mình với
giải
\(3^x=2x+1\)
có j trình bày cách giải tổng quát hộ mình nha