Đặt \(x+y=a,y+z=b;x+z=c\)
Ta có : \(P=Q\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow2a^2+2b^2-2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
\(\Rightarrow x+y=y+z=z+x\)
Lại có : \(\left\{{}\begin{matrix}x+y=y+z\\y+z=z+x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=z\\x=y\end{matrix}\right.\)\(\Rightarrow x=y=z\)
Vậy \(P=Q\Leftrightarrow x=y=z\)
Đặt a = x+y, b = y+z, c = z+x thì
P = a2 + b2 + c2 và Q = ab + bc + ca
Khi P = Q
<=> a2 + b2 + c2 = ab + bc + ca
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
Vì mỗi số hạng lớn hơn hoặc bằng 0 nên dấu "=" xảy ra khi a = b = c
Vậy............................