Tính tổng:
\(S=\frac{x+1}{x\cdot\left(x-y\right)\cdot\left(x-z\right)}+\frac{y+1}{y\cdot\left(y-z\right)\cdot\left(y-x\right)}+\frac{z+1}{z\cdot\left(z-x\right)\left(z-y\right)}\)
Cmr
a) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)
b)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)
c) \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
d) \(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Cho \(x^2-y=a;y^2-z=b;z^2-x=c\)
CM : \(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
không phụ thuộc \(x;y;z\)
Cho x2-y=a , y2-z=b và z2-x=c (a,b,c là các hằng số).CMR: biểu thức sau không phụ thuộc vào biến x,y,z.
\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
Chứng minh rằng biểu thức:
\(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\) luôn có giá trị không âm với mọi giá trị của x,y và z.
Tính \(\dfrac{xyz}{x+y+z}\) biết \(\left(x+y\right):\left(8-z\right):\left(y+z\right):\left(10+z\right)=2:5:3:4\)
Phân tích thành nhân tử
\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
C/m rằng nếu \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\) với x,y,z khác 0 thì \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Cho \(x+y+z=0\). CMR: \(10\left(x^7+y^7+z^7\right)=7\left(x^2+y^2+x^2\right)\left(x^5+y^5+z^5\right)\)
GIẢI CHI TIẾT RA NHA! AI NHANH MK TICK! THANKS!