Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.
Ta chia làm 2 trường hợp:
- TH1: p = 3k + 1
=> 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số.
=> TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.
- TH2: p = 3k + 2
=> 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.
=> TH này được chọn vì đúng theo yêu cầu của đề bài.
=> 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.
Vậy 4p + 1 là hợp số (ĐPCM).
+) Với p=3k+1
Ta có : 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số)
=>\(p\ne3k+1\)
+) Với p=3k+2
Ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5
Vì \(p\ne3k+1\) nên ta chộn trường hợp này
=> 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9=3(4k+3) (chia hết cho 3)
Vậy 4p+1 là hợp số
=>đpcm
Vì p là số nguyên tố lớn hơn 3
Nên p = 3k + 1 hoặc p = 3k + 2 (với k \(\in\) N)
Nếu p = 3k + 1 thì 2p + 1 = 6k + 3 chia hết cho 3 và 1 < 3 < 2p + 1 nên 2p + 1 là hợp số (mâu thuẫn giả thiết)
Do đó, p = 3k + 2 => 4p + 1 = 12k + 9 chia hết cho 3 và 1 < 3 < 4p + 1 => 4p + 1 là hợp số (đpcm)