a)+b)\(P=\dfrac{x+\dfrac{1}{y}}{\dfrac{1}{x}+y}=\dfrac{\dfrac{xy+1}{y}}{\dfrac{1+xy}{x}}\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x\ne0\\P=\dfrac{xy+1}{y}.\dfrac{x}{1+xy}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\xy\ne-1\\P=\dfrac{x}{y}\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x,y>0;x,y\in N\\0< x+y< 50\\\dfrac{x}{y}=8\end{matrix}\right.\)
\(\Leftrightarrow9y< 50\Rightarrow0< y< \dfrac{50}{9}\Rightarrow y=\left\{1,2,3,4,5\right\}\)
\(\left(x,y\right)=\left(8,1\right);\left(16,2\right);\left(24,3\right);\left(32,4\right);\left(40,5\right)\)