Cho mình hỏi bài này có lời giải chưa ạ?
Cho mình hỏi bài này có lời giải chưa ạ?
Cho I, O lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp tam giác ABC với \(\widehat{A}=60^o.\) Gọi H là giao điểm của các đường cao BB' và CC'. Chứng minh các điểm B, C, O, H, I cùng thuộc một đường tròn.
Giải giúp mình với.Cho nửa đường tròn đường kính AB cố định và tiếp tuyến Ax tại A với đường tròn. Một điểm M di động trên nửa đường tròn cùng bên với tiếp tuyến Ax, tia BM gặp tia phân giác của góc Ax tại I. Tìm tập hợp điểm I khi M di động trên nửa đường tròn.
Bài 4: Cho nửa đường tròn (O; R) đường kính AB, kẻ hai tiếp tuyến Ax, By. Từ M thuộc nửa đường tròn kẻ tiếp tuyển thứ ba cắt Ax, By lần lượt tại C và D. a/ Tính số đo góc COD b/C/m: AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn. c/Gọi N là giao điểm của BC và AD. C/m: MN // AC.
1. Cho hình bình hành ABCD ( góc A<90), Đường tròn tâm A, bán kính AB cắt đường thẳng CB tại điểm thứ hai là E. Đường tròn tâm C, bán kính CB cắt đường thẳng AB tại điểm thứ hai là điểm F. Chứng minh rằng: 4 điểm E, F, D, C cùng thuộc một đường tròn.
2. Cho tam giác ABC đều nội tiếp đường tròn(O), D là điểm di động trên cung BC . Trên AD lấy điểm M sao cho DB=DM. Chứng minh điểm M thuộc một đường cố định.
Bài 1: Cho nửa đường tròn tâm o đường kính AB. M,N di động trên nửa đường tròn sao cho M nằm trên cung AN và MN=R . Gọi I là giai điểm của AM và BN, K là giao điểm của AN và BM. Chứng minh
a) Điểm I thuộc 1 đường cố định
b) Điểm K thuộc 1 đường cố định
Bài 2:Cho tam giác ABC nội tiếp đường tròn tâm o. Tiếp tuyến của đường tròn ở B và C cắt nhau ở D. Qua D kẻ một cát tuyến cắt đường tròn ở E và F, cắt cạnh AC ở I. Cho biết EF // AB, chứng minh 4 điểm O,I,C,D cùng thuộc 1 đường tròn
Cho tam giác ABC vuông ở A có cạnh BC cố định , Gọi I là giao điểm của ba đường phân giác trong . Chứng minh 2 điểm nằm trên cung tròn chứa góc 155 độ dựng trên đoạn thẳng BC ?
Cho tam giác ABC vuông tại A. Nửa đường tròn đường kính AB cắt cạnh BC tại điểm D (khác B). Lấy điểm E bất kì trên cung nhỏ AD (E không trùng với A và D). BE cắt cạnh AC tại điểm F. Chứng minh rằng CDEF là tứ giác nội tiếp.
Cho hai đường tròn (O) và (O’) cắt nhau ở A và B. Kẻ tiếp tuyến chung CD của hai đường tròn, C∈ (O); D ∈ (O’). Gọi I là giao điểm của AB và CD. Gọi E là điểm đối xứng với B qua I. Chứng minh rằng: a) BCED là hình bình hành b) Bốn điểm A, C, E , D thuộc cùng một đường tròn