Bài 4: Cho nửa đường tròn (O; R) đường kính AB, kẻ hai tiếp tuyến Ax, By. Từ M thuộc nửa đường tròn kẻ tiếp tuyển thứ ba cắt Ax, By lần lượt tại C và D. a/ Tính số đo góc COD b/C/m: AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn. c/Gọi N là giao điểm của BC và AD. C/m: MN // AC.
Cho nửa đường tròn đường kính AB cố định. C là một điểm trên nửa đường tròn, trên dây AC kéo dài lấy điểm D sao cho CD = CB
a) Tìm quỹ tích các điểm D khi C chạy trên nửa đường tròn đã cho
b) Trên tia CA lấy điểm E sao cho CE = CB. Tìm quỹ tích các điểm E khi C chạy trên nửa đường tròn đã cho
Cho đường tròn đường kính AB cố định, M là một điểm chạy trên đường tròn. Trên tia đối của tia MA lấy điểm I sao cho MI = 2MB.
a) Chứng minh \(\widehat{AIB}\) không đổi.
b) Tìm tập hợp các điểm I nói trên.
Cho nửa đường tròn đường kính AB và C là một điểm trên nửa đường tròn. Trên bán kính OC lấy điểm D sao cho OD bằng khoảng cách CH từ C đến AB.
Tìm quỹ tích các điểm D khi C chạy trên nửa đường tròn đã cho ?
Cho nửa đường tròn tâm O đường kính AB. Điểm C chuyển động trên nửa đường tròn. Kẻ tia tiếp tuyến Ax với nửa đường tròn. Đường phân giác của góc xAC cắt nửa đường tròn tại D. Nối AC cắt BD tại K, tia AD cắt BC tại E
a) CM:tg EDKC nt và tam giác BAE cân tại B
b) Giả sử sinBAC=1/2.cm:AK=2KC
c) Cho AB=10cm, góc XAC=60. TÍnh diện tích tam giác EDC
d) Tìm vị trí điểm C để diện tích EAB lớn nhất
Bài 1: Cho nửa đường tròn tâm o đường kính AB. M,N di động trên nửa đường tròn sao cho M nằm trên cung AN và MN=R . Gọi I là giai điểm của AM và BN, K là giao điểm của AN và BM. Chứng minh
a) Điểm I thuộc 1 đường cố định
b) Điểm K thuộc 1 đường cố định
Bài 2:Cho tam giác ABC nội tiếp đường tròn tâm o. Tiếp tuyến của đường tròn ở B và C cắt nhau ở D. Qua D kẻ một cát tuyến cắt đường tròn ở E và F, cắt cạnh AC ở I. Cho biết EF // AB, chứng minh 4 điểm O,I,C,D cùng thuộc 1 đường tròn
Giúp mình với, cảm ơn mọi người nhiều!
Cho một điểm A cố định ở ngoài đường tròn tâm O bán kính R. Đường tròn tâm I di động qua A cắt (O) tại B và C. a) Đường thắng AB cắt đường tròn (O) tại E. Tiếp tuyến tại A của đường tròn (I) và tiếp tuyến tại E của đường tròn (O) cắt nhau tại F. Chứng minh A, C, E, F nằm trên một đường tròn.
b) Gọi M là giao điểm của đường thẳng BC và tiếp tuyến tại A của đường tròn (I). Chứng minh rằng điểm M luôn ở trên một đường thẳng cố định.
Cho nửa đường tròn (O) đường kính AB. Có C là điểm chính giữa cung. M là 1 điểm chuyển động trên cung BC. Lấy điểm N thuộc đường thẳng AM sao cho AN = BM . Vẽ tiếp tuyến Ax với nửa đường tròn, lấy D trên Ax sao cho AD = AB.
a) CMR: \(\Delta\)MNC vuông cân
b) CMR: DN \(\perp\) AM
c) Tìm quỹ tích của N