a. Cho \(x=1\) ta được:
\(\left(1+1+2\right)^{10}=a_0+a_1+a_2+...+a_{20}\)
\(\Rightarrow S_1=4^{10}\)
b. Cho \(x=2\) ta được:
\(\left(1+2+8\right)^{10}=a_0+a_1.2+a_2.2^2+...+a_{20}.2^{20}\)
\(\Rightarrow S_2=11^{10}\)
c.
\(\left(1+x+2x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x+2x^2\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i.2^ix^{i+k}\)
Số hạng chứa \(\Rightarrow\left\{{}\begin{matrix}i+k=17\\0\le i\le k\le10\end{matrix}\right.\)
\(\Rightarrow\left(i;k\right)=\left(7;10\right);\left(8;9\right)\)
\(\Rightarrow a_{17}=C_{10}^{10}C_{10}^7.2^7+C_{10}^9.C_9^8.2^8=...\)