Kéo dài MN cắt AD và AB lần lượt tại E và F, nối PE cắt SD tại K và PF cắt SB tại Q \(\Rightarrow PQMNK\) là tiết diện của (MNP) và chóp.
Gọi thể tích chóp là \(V\) , khoảng cách từ S xuống đáy là \(h\) và giả định phần dưới là \(V_1\) cho dễ gọi tên
\(V_1=V_{PAEF}-V_{KDEN}-V_{QBME}\)
\(S_{DEN}=S_{BMF}=S_{MNC}=\frac{1}{8}S_{ABCD}\Rightarrow S_{AEF}=\frac{9}{8}S_{ABCD}\)
\(\Rightarrow V_{PAEF}=\frac{1}{3}.\frac{h}{2}.S_{AEF}=\frac{9}{16}\frac{1}{3}hS_{ABCD}=\frac{9}{16}V\)
Áp dụng định lý Menelaus: \(\frac{PS}{PA}.\frac{EA}{ED}.\frac{KD}{KS}=1\Rightarrow1.\frac{3}{1}.\frac{KD}{KS}=1\)
\(\Rightarrow KS=3KD\Rightarrow KD=\frac{1}{4}SD\Rightarrow d\left(K;\left(ABCD\right)\right)=\frac{1}{4}d\left(S;\left(SBCD\right)\right)=\frac{h}{4}\)
\(\Rightarrow V_{KDEN}=V_{QBME}=\frac{1}{3}.\frac{h}{4}.\frac{1}{8}S_{ABCD}=\frac{1}{32}.\left(\frac{1}{3}hS_{ABCD}\right)=\frac{V}{32}\)
\(\Rightarrow V_1=\frac{9}{16}V-2.\frac{V}{32}=\frac{V}{2}\)
\(\Rightarrow V_1=V_2=\frac{V}{2}\)