Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen thi thanh huyen

Cho hpt:\(\left\{{}\begin{matrix}3x+(m-1)y=12\\(m-1)x+12y=24\end{matrix}\right.\)

a, tìm m để hpt có nghiệm duy nhất thỏa mãn x+y=-1

b,tìm m để hpt có nghiệm duy nhất và nguyên

Trần Thanh Phương
21 tháng 3 2020 lúc 9:25

a) \(\left\{{}\begin{matrix}3x+\left(m-1\right)y=12\\\left(m-1\right)x+12y=24\end{matrix}\right.\)

+) Xét \(m=1\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\) ( loại )

+) Xét \(m\ne1\):

\(\left\{{}\begin{matrix}x=\frac{24-12y}{m-1}\\\frac{3\cdot\left(24-12y\right)}{m-1}+\left(m-1\right)y=12\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(24-12y\right)+\left(m-1\right)^2\cdot y=12\left(m-1\right)\)

\(\Leftrightarrow y\left(m^2-2m-35\right)=12m-84\)

\(\Leftrightarrow y\left(m-7\right)\left(m+5\right)-12\left(m-7\right)=0\)

\(\Leftrightarrow\left(m-7\right)\cdot\left[y\left(m+5\right)-12\right]=0\)

Xét \(m=7\Leftrightarrow x+2y=4\) ( loại vì có vô số nghiệm thỏa mãn )

Xét \(m\ne7\Leftrightarrow y\left(m+5\right)-12=0\Leftrightarrow y=\frac{12}{m+5}\) ( \(m\ne-5\) )

Khi đó \(x=\frac{24-12\cdot\frac{12}{m+5}}{m-1}=\frac{24}{m+5}\)

\(x+y=\frac{12+24}{m+5}=-1\)

\(\Leftrightarrow\frac{36}{m+5}=-1\Leftrightarrow m=-41\) ( thỏa mãn )

Vậy...

b) Hpt có nghiệm duy nhất nguyên \(\Leftrightarrow\left\{{}\begin{matrix}\frac{12}{m+5}\in Z\\\frac{24}{m+5}\in Z\end{matrix}\right.\)

\(24⋮12\Leftrightarrow\frac{12}{m+5}\in Z\) \(\Leftrightarrow\left(m+5\right)\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Đến đây tự tìm m rồi thử lại nhé.

\(\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Curry
Xem chi tiết
Ánh Dương Hoàng Vũ
Xem chi tiết
Winnerr NN
Xem chi tiết
Hoang Nguyen
Xem chi tiết
Hoài An
Xem chi tiết
Big City Boy
Xem chi tiết