a) \(\left\{{}\begin{matrix}3x+\left(m-1\right)y=12\\\left(m-1\right)x+12y=24\end{matrix}\right.\)
+) Xét \(m=1\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\) ( loại )
+) Xét \(m\ne1\):
\(\left\{{}\begin{matrix}x=\frac{24-12y}{m-1}\\\frac{3\cdot\left(24-12y\right)}{m-1}+\left(m-1\right)y=12\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(24-12y\right)+\left(m-1\right)^2\cdot y=12\left(m-1\right)\)
\(\Leftrightarrow y\left(m^2-2m-35\right)=12m-84\)
\(\Leftrightarrow y\left(m-7\right)\left(m+5\right)-12\left(m-7\right)=0\)
\(\Leftrightarrow\left(m-7\right)\cdot\left[y\left(m+5\right)-12\right]=0\)
Xét \(m=7\Leftrightarrow x+2y=4\) ( loại vì có vô số nghiệm thỏa mãn )
Xét \(m\ne7\Leftrightarrow y\left(m+5\right)-12=0\Leftrightarrow y=\frac{12}{m+5}\) ( \(m\ne-5\) )
Khi đó \(x=\frac{24-12\cdot\frac{12}{m+5}}{m-1}=\frac{24}{m+5}\)
\(x+y=\frac{12+24}{m+5}=-1\)
\(\Leftrightarrow\frac{36}{m+5}=-1\Leftrightarrow m=-41\) ( thỏa mãn )
Vậy...
b) Hpt có nghiệm duy nhất nguyên \(\Leftrightarrow\left\{{}\begin{matrix}\frac{12}{m+5}\in Z\\\frac{24}{m+5}\in Z\end{matrix}\right.\)
Mà \(24⋮12\Leftrightarrow\frac{12}{m+5}\in Z\) \(\Leftrightarrow\left(m+5\right)\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Đến đây tự tìm m rồi thử lại nhé.
\(\)