Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Winnerr NN

cho hpt\(\left\{{}\begin{matrix}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{matrix}\right.\)tìm giá trị của m để hpt có nghiệm duy nhất sao cho x+y nhỏ nhất

Akai Haruma
22 tháng 5 2018 lúc 0:38

Lời giải:

\(\left\{\begin{matrix} (m+1)x-y=m+1\\ x+(m-1)y=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (m+1)x-y=m+1\\ x(m+1)+(m^2-1)y=2(m+1)\end{matrix}\right.\)

Lấy PT(2)- PT(1):

\(\Rightarrow m^2y=m+1\)

Hiển nhiên \(m\neq 0\Rightarrow y=\frac{m+1}{m^2}\)

Thay vào \(x+(m-1)y=2\) suy ra \(x=1+\frac{1}{m^2}\)

Do đó hpt luôn có nghiệm duy nhất \((x,y)=\left(1+\frac{1}{m^2}, \frac{m+1}{m^2}\right)\) với mọi $m\neq 0$

Khi đó:

\(x+y=1+\frac{2}{m^2}+\frac{1}{m}=\left(\frac{\sqrt{2}}{m}+\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\geq \frac{7}{8}\)

Để đạt được min \(=\frac{7}{8}\) thì \(\frac{\sqrt{2}}{m}+\frac{1}{2\sqrt{2}}=0\Leftrightarrow m=-4\)


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
Hoang Nguyen
Xem chi tiết
Hoài An
Xem chi tiết
Trần Diệp Nhi
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Ánh Dương Hoàng Vũ
Xem chi tiết