Cho hình vuông ABCD có cạnh bằng 1. Trên các cạnh AB, AD lần lượt lấy các điểm P,Qsao cho tam giác APQ có chu vi bằng 2.
a) Chứng minh PB+OP=PQ
b) Tính độ lớn góc PCQ
Giúp mk với ạ.
Cho hình chữ nhật ABCD có AB=2.AD. Gọi E; I lần lượt là trung điểm của AB và CD. Nối D và E. Vẽ tia Dx sao cho Dx vuông góc với DE, và Dx cắt tia đối của tia CB tại M. Trên tia đối của tia CE lấy điểm K sao cho DM=EK. Gọi G là giao điểmcủa DK và EM.
Tính số đo \(\widehat{DBK}\) ?
cho tam giác ABC vuông tại A. Từ một điểm D bất kì trên cạnh BC kẻ \(DE\perp AC\) tại E: \(DF\perp AB\) tại F
A) chứng mình rằng tứ giác AEDF là hình chữ nhật
B)trên tia đối của tia AB lấy điểm G sao cho AG=AF. Gọi H là giao điểm của AE vad DG. Chúng minh rằng FH là đường trung tuyến của tam giác FDG
Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
cho tam giác ABC vuông tại a có ah vuông góc với BC, trên cạnh AB, AC lấy 2 điểm E, D sao cho góc DHE=90 độ. Tìm vị trí của điểm D, E sao cho độ dài DE nhỏ nhất
Tam giác ABC, gọi E và F lần lượt là t/điểm của AB và AC. Trên tia đối của FB lấy P sao cho FP = FB. Trên tia đối EC lấy Q sao cho EQ = EC.CMR:
a) AP = AQ
b) 3 điểm P,A,Q thẳng hàng (2 cách)
c) BQ//AC, CP//AB
d) Gọi R là g/điểm của PC và QB. CM Chu vi tam giác PQR = 2 lần chu vi tam giác ABC
e) 3 đg thẳng AR,BP,CQ đồng quy
Cho hình thang ABCD có đg cao AH = 30 cm và đoạn CD = 50 cm. M ở trên AB. Lấy E và F lần lượt là trung điểm của AC và BD. Lấy P đối xứng với E qua M; Q đối xứng với F qua M. Tính PQ
Cho hình thang ABCD có đg cao AH = 30 cm và đoạn CD = 50 cm. M ở trên AB. Lấy E và F lần lượt là trung điểm của AC và BD. Lấy P đối xứng với E qua M; K đối xứng với F qua Q. Tính PQ
VẼ HÌNH và làm bài
Cho tam giác ABC. Gọi E, F theo thứ tự là trung điểm của các cạnh AB; AC. Trên tia đối của tia FB lấy điểm P sao cho PF = BF. Trên tia đối của tia EC lấy điểm Q sao cho QE = CE. Gọi R là giao điểm hai đường thẳng PC và BQ.
1) CM: AP = AQ.
2) CM: BQ // AC và CP // AB.
3) CM: 3 điểm P; A; Q thẳng hàng.
4) CM: chu vi tam giác PQR bằng hai lần chu vi tam giác ABC.
5) CM: 3 đường thẳng AR; BP; CQ đồng quy.