Cho hình thoi ABCD có góc BAD bằng 500, O là giao điểm của AC và BD, H là hình chiếu của điểm O trên AB. Trên tia đối của BC lấy M, trên tia đối của DC lấy N sao cho HM //AN. Tính số đo góc MON.
Cho hình thoi ABCD có góc BAD bằng 500, O là giao điểm của AC và BD, H là hình chiếu của điểm O trên AB. Trên tia đối của BC lấy M, trên tia đối của DC lấy N sao cho HM //AN. Tính số đo góc MON
Cho hình thoi ABCD có góc A = 50 độ . Gọi O là giao điểm 2 đường chéo . Vẽ OH vuông góc AB , Trên tia đối tia BC lấy M , trên tia đối tia DC lấy N sao cho HM//AN. Chứng minh
a,MB.DN=BH.AD b, Tính số đo góc MON
Cho đường tròn tâm O, đường kính AB, điểm I thay đổi trên đoạn OA ( khác A). Đường thẳng qua I vuông góc với AB cắt (O) tại C và D. Trên tia đối của tia BA lấy điểm S cố định. Đoạn CS cắt (O) tại M, gọi E là giao điểm của DM và AB.
a) Chứng minh tam giác SBC và tam giác SMA đồng dạng.
b) Chứng minh độ dài đoạn OE không phụ thuộc vào vị trí của điểm I.
cho đường tròn tâm O đường kính AB và điểm C bất kì trên nửa đường tròn sao cho AC<CB. gọi C' là điểm đối xứng của C qua AB và D là giao điểm cuả 2 tia BC, C'A. gọi K là chân đường vuông góc từ D đến Ab và D' à giao điểm của CA và DK
a.cm CD.BH=HC.CD' (H là giao điểm của MC' với AB)
Giúp mình với mốt là mình đi thi rồi
Cho (O,R) trên (O,R) lấy hai điểm A và H sao cho AH<R. Gọi a là tiếp tuyến tại H của (O) . Trên a lấy hai điểm B và C sao cho H nằm giữa B,C và AB=AC=R Từ H lần lượt vẽ HM vuông góc với OB (M thuộc OB ) và HN vuông góc OC (N thuộc OC )
1) CM rằng MN là trung trực OA
2) Chứng minh OB.OC=2R2
3) Tìm giá trị lớn lớn nhất của diện tích tam giác OMN khi H thay đổi
( Hướng dẫn : Gọi S là điểm thuộc cung nhỏ HI. Kẻ tiếp tuyến tại S của (O) cắt BH, BI lần lượt tại R và T )
cho hình vuông ABCD. Trên cạnh BC lấy điểm E, gọi F là giao điểmcủa AE và DC, I là giao điểm của DE và BF. Chứng minh: CI vuông góc AF
Cho đường tròn (O;R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I là trung điểm của BC.1) Chứng minh A; O; M; N; I cùng thuộc một đường tròn và IA là tia phân giác của góc MIN.2) Gọi K là giao điểm của MN và BC. Chứng minh
\(\dfrac{2}{AK}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
3) Đường thẳng qua M và vuông góc với đường thẳng ON cắt (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để AMPN là hình bình hành.
Mình cần câu c thôi
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.