1. Cho hình thang cân ABCD , đáy nhỏ và đường cao cùng bằng 2a , \(\widehat{ABC}=45^0\) . Tính
a. \(\left|\overrightarrow{BD}\right|\)
b. \(\left|\overrightarrow{CB}-\overrightarrow{AD}+\overrightarrow{AC}\right|\)
Cho hình thang cân ABCD có CD = 2AB = 2a, ( a > 0 ), góc DAB = 120. AH vuông góc với CD tại H. tính vecto \(\overrightarrow{AH}\left(\overrightarrow{CD}-4\overrightarrow{AD}\right)+\overrightarrow{AC}.\overrightarrow{BH}\)
Phân tích \(\overrightarrow{AH}theo\overrightarrow{AB}va\overrightarrow{AC}\)
\(\Delta ABC\)đều cạnh a. \(AD\perp BC,DF\perp AB,FH\perp AD\left(H\in AD\right)\)
Cho hình bình hành ABCD có \(\widehat{BAD}=60^o\), AB =2a. Gọi E, F là trung điểm của BC , C. G là trọng tâm của tam gaics ACD.
Tính \(\left|\overrightarrow{AB}+2\overrightarrow{AD}\right|\) theo a.
Cho hình thoi ABCD có \(\widehat{BAD}\) = 60o và cạnh là a. Gọi O là giao điểm 2 đường chéo. Tính:
a) \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|\)
b) \(\left|\overrightarrow{BA}-\overrightarrow{BC}\right|\)
1. Cho hình vuông ABCD có cạnh bằng a. Độ dài \(\left|\overrightarrow{AD}+\overrightarrow{AB}\right|\) bằng:
A. 2a
B.a\(\sqrt{2}\)
C.\(\frac{a\sqrt{3}}{2}\)
D. \(\frac{a\sqrt{2}}{2}\)
2. Cho hình thang ABCD có AB song song với CD. Cho AB=2a, CD= a , O là trung điểm của AD. Khi đó
A.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\frac{3a}{2}\)
B. \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\)
C.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=2a\)
D.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=3a\)
3. Cho tam giác đều ABC cạnh a. Khi đó:
A. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
B.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
C. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\frac{a\sqrt{3}}{2}\)
D.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
Cho hình chữ nhật ABCD tâm O
AB = 3 , AD = 4
a / Chứng minh:
\(\overrightarrow{DO}+\overrightarrow{AO}=\overrightarrow{DC}\)
\(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AB}\)
\(\overrightarrow{BA}+\overrightarrow{DB}=\overrightarrow{CB}\)
b/ Tính
\(\left|\overrightarrow{AB}+\overrightarrow{CB}\right|\)
\(\left|\overrightarrow{OD}+\overrightarrow{OC}\right|\)
\(\left|\overrightarrow{DA}+\overrightarrow{OC}\right|\)
\(\left|\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{BA}\right|\)
Cho tam giác ABC vuông tại A có \(\widehat{B}\)=60độ, BC=2cm. Tính \(\left|\overrightarrow{AB}\right|,\left|\overrightarrow{AC}\right|,\left|\overrightarrow{AB}+\overrightarrow{AC}\right|,\left|\overrightarrow{AB}-\overrightarrow{AC}\right|?\)
1. Cho hình thoi ABCD cạnh a : \(\widehat{ABC}=60^0\) , AC cắt BD tại O . Tính theo a
a. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|\)
b. \(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|+\left|\overrightarrow{OC}+\overrightarrow{OD}\right|\)
c. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right|+\left|\overrightarrow{OD}\right|\)