Gọi E, F là trung điểm của BC , C gì hà bạn
Gọi E, F là trung điểm của BC , C gì hà bạn
Cho hình thoi ABCD có \(\widehat{BAD}\) = 60o và cạnh là a. Gọi O là giao điểm 2 đường chéo. Tính:
a) \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|\)
b) \(\left|\overrightarrow{BA}-\overrightarrow{BC}\right|\)
Cho HCN ABCD tâm O. Gọi M,N lần lượt là trung điểm của OA và CD. Bt \(\overrightarrow{MN}=a.\overrightarrow{AB}+b\overrightarrow{AD}\) . Tính a+b
1. cho tam giác ABC. gọi I là trung điểm BC, P là điểm đối xứng với A qua B; R là điểm trên cạnh AC sao cho \(AR=\frac{2}{5}AC\) . gọi G là trọng tâm tam giác ABI. CMR P,G,R thẳng hàng
2. cho hbh ABCD. gọi I là trung điểm CD, G là trọng tâm tam giác BCI. đặt \(\overrightarrow{a}=\overrightarrow{AB},\overrightarrow{b}=\overrightarrow{AD}\) . Phân tích \(\overrightarrow{AG}\) theo \(\overrightarrow{AB,}\overrightarrow{AD}\)
Cho tam giác ABC có trọng tâm G. D,E,F lần lượt là trung điểm của BC,CA,AB. Gọi I là giao của AD,EF.
Đặt \(\overrightarrow{u}=\overrightarrow{AE},\overrightarrow{v}=\overrightarrow{AF}\)
Hãy biểu diễn \(\overrightarrow{AI},\overrightarrow{AG},\overrightarrow{DE},\overrightarrow{DC}\) theo \(\overrightarrow{u},\overrightarrow{v}\)
Cho tam giác ABC có trọng tâm G. D,E,F lần lượt là trung điểm của BC,CA,AB. Gọi I là giao của AD,EF.
Đặt \(\overrightarrow{u}=AD\); \(\overrightarrow{v}=AF\)
Hãy biểu diễn \(\overrightarrow{AI},\overrightarrow{AG},\overrightarrow{DE},\overrightarrow{DC}\) theo \(\overrightarrow{u};\overrightarrow{v}\)
Cho hình thoi ABCD tâm O, cạnh bằng a và góc ABC=60 . Gọi I là trung điểm của DO và G là trọng tâm tam giác ABO. Tính theo a độ dài \(\left|\overrightarrow{BA}+2\overrightarrow{BC}\right|\)
Ai giúp e vs ah. Thanks mn nhìu..
1. Cho hình vuông ABCD có cạnh bằng a. Độ dài \(\left|\overrightarrow{AD}+\overrightarrow{AB}\right|\) bằng:
A. 2a
B.a\(\sqrt{2}\)
C.\(\frac{a\sqrt{3}}{2}\)
D. \(\frac{a\sqrt{2}}{2}\)
2. Cho hình thang ABCD có AB song song với CD. Cho AB=2a, CD= a , O là trung điểm của AD. Khi đó
A.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\frac{3a}{2}\)
B. \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\)
C.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=2a\)
D.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=3a\)
3. Cho tam giác đều ABC cạnh a. Khi đó:
A. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
B.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
C. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\frac{a\sqrt{3}}{2}\)
D.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
Cho tam giác ABC đều có AB = 2a. Gọi I là trung điểm của trung tuyến AM. Tính \(\left|\overrightarrow{BA}-\overrightarrow{BI}\right|\) theo a.
cho hình chữ nhật ABCD. F là trung điểm của cạnh CD,E là điểm xác định bởi AB = 2EA.Gọi G là trọng tâm tam giác BEF.Phân tích vecto DG theo hai vecto AB,AD