a, Xét \(\bigtriangleup{EAB} \) và \(\bigtriangleup{CDE}\) , ta có :
\(\widehat{A} = \widehat{D} = 90^0\)
\(\widehat{AEB} = \widehat{ECD} \)
\(\Rightarrow\) \(\bigtriangleup{EAB} \sim \bigtriangleup{CDE}\) (g.g)
\(\Rightarrow\) \(\dfrac{AB}{DE} = \dfrac{EA}{CD} \)
\(\Rightarrow\) \( \dfrac{AB}{a} = \dfrac{a}{CD} \)
\(\Rightarrow\) \(AB.CD = a^2 \) (đpcm)
b, Xét \(\bigtriangleup{EAB}\) và \(\bigtriangleup{CEB}\) , ta có :
\(\widehat{A} = \widehat{CEB} = 90^0\)
Từ a, ta có : \(\dfrac{EB}{CE} = \dfrac{AB}{DE} = \dfrac{AB}{AE} \)
\(\Rightarrow\) \(\dfrac{EB}{AB} = \dfrac{ CE}{AE}\)
\(\Rightarrow\) \(\bigtriangleup{EAB} \) ~ \(\bigtriangleup{CEB} \)