Cho tam giác ABC nội tiếp (O), H là trực tâm, AH cắt (O) tại E. Kẻ đường kính AOF. Chứng minh:
a) Tứ giác BCEF là hình thang cân
b) \(\widehat{BAE}=\widehat{CAF}\)
c) Gọi I là trung điểm của BC. Chứng minh: H, I, F thẳng hàng
Cho hình thang vuông ABCD ( \(\widehat{A} = \widehat{D} = 90 ^0\) ) ; E là trung điểm của AD và \(\widehat{BEC} = 90^0\) . Cho biết ED = 2a . CMR :
a, AB . CD = \(a^2\)
b, \(\bigtriangleup{EAB}\) tia tia phân giác của \(\widehat{ABC}\)
Cho hình thang ABCD có \(\widehat{A}=\widehat{D}=90^o;\widehat{B}=135^o\) và \(AB=\sqrt{10}\). Qua A, kẻ AE//BD, E thuộc DC, AE cắt BC tại F. Tính DF
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.AC\(^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^4\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
bài 1 : cho hình chữ nhật abcd có ab=5cm bc=12cm
a). tính độ dài đoạn thẳng BD
b). kẻ AH vuông BD tại H . Tính độ dài đoạn thẳng AH.
c). đường thẳng AH cắt BC , DC lần lượt tại I và K . chứng minh rằng AH^2=HI.HK
Cho hình thang ABCD có đường cao AP và BQ cùng bằng đáy nhỏ AB (P,Q thuộc CD) và \(\widehat{BCD}+\widehat{ADC}=90^o\). Gọi E và F lần lượt là giao điểm của AP và BD; BQ và AC. Đường thẳng EF cắt AD và BC ở M,N. Chứng minh: EM = FN.