Cho hình thang vuông ABCD (AB // CD) có \(\widehat{A}=\widehat{D}=90^0,\widehat{B}=60^0,CD=30cm,CA\perp CB\) . Tính diện tích của hình thang ABCD.
Cho hình thang vuông ABCD ( \(\widehat{A} = \widehat{D} = 90 ^0\) ) ; E là trung điểm của AD và \(\widehat{BEC} = 90^0\) . Cho biết ED = 2a . CMR :
a, AB . CD = \(a^2\)
b, \(\bigtriangleup{EAB}\) tia tia phân giác của \(\widehat{ABC}\)
cho hinh thang ABCD, có \(\widehat{A}\)=\(\widehat{D}\)=90, AB=4 CM, CD=8cm, AD=3cm. Tính BC, \(\widehat{B}\),\(\widehat{C}\)
cho hinh thang ABCD có\(\widehat{A}=\widehat{D}=90^o\), \(\widehat{C}=50^o\). Biết AB=2cm, CD=1,2cm. Tính diện tích hình thang
Cho hình thang ABCD có \(\widehat{A} =\widehat{D}= 90^0\) , hai đường chéo vuông góc với nhau tại O ; AB = 9cm :CD = 16cm . Tính \(S_{\bigtriangleup{ABCD}}\)
Cho hình thang ABCD có \(\widehat{B}=\widehat{C}=90^O\). Hai đường chéo vuông góc với nhau tại H. Biết AB = \(3\sqrt{5}\) cm, HA = 3cm. Chứng minh:
a) HA:HB:HC:HD = 1:2:4:8
b) \(\dfrac{1}{AB^2}-\dfrac{1}{CD^2}=\dfrac{1}{HB^2}-\dfrac{1}{HC^2}\)
Tính diện tích hình thang ABCD (AB // CD) biết \(\widehat{C}=30^0\) , \(\widehat{D}=60^0\) , AB = \(2\sqrt{2}cm\) , CD = 8cm.
Cho hình thang vuông ABCD \(\left(\widehat{A}=\widehat{D}=90^0\right)\) , AB = 4cm, BC =13cm, CD = 9cm.
a, Tính độ dài AD
b, C/minh: Đường thẳng AD tiếp xúc với đường tròn đường kính BC.
c, Gọi H là tiếp điểm của đường thẳng AD với đường tròn đường kính BC. C/minh: BH là tia phân giác của góc ABC
d, Kẻ \(HK\perp BC\) tại K. C/minh: \(HK^2=AB.CD\) .
Cho tứ giác ABCD có \(\widehat{A}=\widehat{B}=90^0,AB=6,BC=2,AD=3.\)Tính góc nhọn tạo bởi 2 đường chéo của tứ giác