Cho hình thang ABCD ( đáy lớn DC, đáy nhỏ AB) gọi E là trung điểm DB. CMR
\(\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}+\overrightarrow{ED}=\overrightarrow{DA}+\overrightarrow{BC}\)
cho ABCD là hình thang có đáy AB , CD sao cho AB = 2CD . Từ C vẽ \(\overrightarrow{CI}=\overrightarrow{DA}\) . Chứng minh rằng
a, \(\overrightarrow{AD}=\overrightarrow{IC}\)
b, \(\overrightarrow{AI}=\overrightarrow{IB}\)\(=\overrightarrow{DC}\)
C , \(\overrightarrow{DI}=\overrightarrow{CB}\)
Cho tứ giác ABCD có I , J là trung điểm của BC và CD . C/m \(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{JA}+\overrightarrow{DA}=\frac{3}{2}\overrightarrow{DB}\)
cho hình thang vuông abcd đường cao ab = a, đáy lớn bc = 2a, đáy nhỏ ad = a
tính tích vô hướng \(\overrightarrow{AC}.\overrightarrow{BD}\) từ đó suy ra giá trị của cos (\(\overrightarrow{AC}.\overrightarrow{BD}\))
Cm
1) \(\overrightarrow{PQ}+\overrightarrow{NP}+\overrightarrow{MN}=\overrightarrow{MQ}\)
2)\(\overrightarrow{NP}+\overrightarrow{MN}=\overrightarrow{QP}+\overrightarrow{MQ}\)
3)\(\overrightarrow{MN}+\overrightarrow{PQ}=\overrightarrow{MQ}+\overrightarrow{PN}\)
4)\(\overrightarrow{MN}+\overrightarrow{PQ}+\overrightarrow{QM}+\overrightarrow{NP}=\overrightarrow{O}\)
5)\(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{DB}\)
6)\(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{BF}\)
7)\(\overrightarrow{AD}-\overrightarrow{FC}-\overrightarrow{EB}=\overrightarrow{CD}-\overrightarrow{EA}-\overrightarrow{FB}\)
8)\(\overrightarrow{AB}-\overrightarrow{DC}-\overrightarrow{FE}=\overrightarrow{CF}-\overrightarrow{DA}+\overrightarrow{EC}\)
Cho hình chữ nhật ABCD tâm O
AB = 3 , AD = 4
a / Chứng minh:
\(\overrightarrow{DO}+\overrightarrow{AO}=\overrightarrow{DC}\)
\(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AB}\)
\(\overrightarrow{BA}+\overrightarrow{DB}=\overrightarrow{CB}\)
b/ Tính
\(\left|\overrightarrow{AB}+\overrightarrow{CB}\right|\)
\(\left|\overrightarrow{OD}+\overrightarrow{OC}\right|\)
\(\left|\overrightarrow{DA}+\overrightarrow{OC}\right|\)
\(\left|\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{BA}\right|\)
1. Cho hình bình hành ABCD tâm O. Đẳng thức nào sau đây đúng ?
A. \(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{2BC}\)
B.\(\overrightarrow{AC}-\overrightarrow{CB}=\overrightarrow{AB}\)
C.\(\overrightarrow{AC}-\overrightarrow{BD}=\overrightarrow{2CD}\)
D. \(\overrightarrow{DA}+\overrightarrow{DC}=\overrightarrow{2DO}\)
2. Cho tứ giác ABCD, M và N lần lượt là trung điểm của AD,BC, đặt \(\overrightarrow{AB}=\overrightarrow{a};\overrightarrow{DC}=\overrightarrow{b}\) khi đó số m, n thỏa mãn\(\overrightarrow{MN}=\overrightarrow{ma}+\overrightarrow{nb}\) là :
A. m= \(-\dfrac{1}{2}\) , n =\(\dfrac{1}{2}\)
B. m = \(\dfrac{1}{2},n=\dfrac{1}{2}\)
C.\(m=\dfrac{1}{2},n=-\dfrac{1}{2}\)
D. \(m=-\dfrac{1}{2},n=-\dfrac{1}{2}\)
3. Cho tứ giác BDEF. CMR : \(\overrightarrow{BD}+\overrightarrow{FE}=\overrightarrow{FD}+\overrightarrow{EB}\)
1. Cho hình vuông ABCD có cạnh bằng a. Độ dài \(\left|\overrightarrow{AD}+\overrightarrow{AB}\right|\) bằng:
A. 2a
B.a\(\sqrt{2}\)
C.\(\frac{a\sqrt{3}}{2}\)
D. \(\frac{a\sqrt{2}}{2}\)
2. Cho hình thang ABCD có AB song song với CD. Cho AB=2a, CD= a , O là trung điểm của AD. Khi đó
A.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\frac{3a}{2}\)
B. \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\)
C.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=2a\)
D.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=3a\)
3. Cho tam giác đều ABC cạnh a. Khi đó:
A. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
B.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
C. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\frac{a\sqrt{3}}{2}\)
D.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
Cho hình vuông ABCD cạnh a. Tính \(\left|\overrightarrow{AC}-\overrightarrow{BD}\right|\);\(\left|\overrightarrow{AB}-\overrightarrow{BC}-\overrightarrow{CD}-\overrightarrow{DA}\right|\)