Cho tứ giác ABCD. Gọi I,J lần lượt là trung điểm AC và BD. Gọi E là trung điểm IJ. CMR
\(\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}+\overrightarrow{ED}=\overrightarrow{0}\)
Cho hình vuông ABCD, I là trung điểm BC, M là điểm trên AB sao cho AM=2AB, N là điểm thỏa \(\overrightarrow{AN}=2\overrightarrow{AC}\)
Tìm tập hợp E thỏa mãn \(\left|\overrightarrow{EA}+\overrightarrow{EC}+\overrightarrow{ED}\right|=\left|\overrightarrow{EA}+\overrightarrow{EC}-2\overrightarrow{ED}\right|\)
1/ Cho tam giác ABC và trung tuyến Cm tìm và dựng điểm E sao cho :
\(\overrightarrow{EA}+\overrightarrow{EB}+2\overrightarrow{EC}=\overrightarrow{0}\)
2/Cho 1 hình thang ABCD .Gọi M,N theo thứ tự là các trung điểm của các cạnh bê AD , BC . Biết \(\overrightarrow{AB}=\overrightarrow{u},\overrightarrow{BC}=\overrightarrow{v}.\)Hãy biểu diễn \(\overrightarrow{NM},\overrightarrow{AM},\overrightarrow{CN}\)theo \(\overrightarrow{u}\)và \(\overrightarrow{v}\)
1/ Cho tam giác ABC và trung tuyến CM tìm và dựng điểm E sao cho :
\(\overrightarrow{EA}+\overrightarrow{EB}+2\overrightarrow{EC}=\overrightarrow{0}\)
2/Cho 1 hình thang ABCD .Gọi M,N theo thứ tự là các trung điểm của các cạnh bên AD , BC . Biết \(\overrightarrow{AB}=\overrightarrow{u},\overrightarrow{BC}=\overrightarrow{v}\). Hãy biểu diễn \(\overrightarrow{MN},\overrightarrow{AM},\overrightarrow{CN}\) theo \(\overrightarrow{u}\) và \(\overrightarrow{v}\)
cho hình thang vuông abcd đường cao ab = a, đáy lớn bc = 2a, đáy nhỏ ad = a
tính tích vô hướng \(\overrightarrow{AC}.\overrightarrow{BD}\) từ đó suy ra giá trị của cos (\(\overrightarrow{AC}.\overrightarrow{BD}\))
Cm
1) \(\overrightarrow{PQ}+\overrightarrow{NP}+\overrightarrow{MN}=\overrightarrow{MQ}\)
2)\(\overrightarrow{NP}+\overrightarrow{MN}=\overrightarrow{QP}+\overrightarrow{MQ}\)
3)\(\overrightarrow{MN}+\overrightarrow{PQ}=\overrightarrow{MQ}+\overrightarrow{PN}\)
4)\(\overrightarrow{MN}+\overrightarrow{PQ}+\overrightarrow{QM}+\overrightarrow{NP}=\overrightarrow{O}\)
5)\(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{DB}\)
6)\(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{BF}\)
7)\(\overrightarrow{AD}-\overrightarrow{FC}-\overrightarrow{EB}=\overrightarrow{CD}-\overrightarrow{EA}-\overrightarrow{FB}\)
8)\(\overrightarrow{AB}-\overrightarrow{DC}-\overrightarrow{FE}=\overrightarrow{CF}-\overrightarrow{DA}+\overrightarrow{EC}\)
Cho tứ giác ABCD. Gọi M, N là trung điểm AD, BC. CMR: \(3\overrightarrow{MO}=\overrightarrow{AB}+\overrightarrow{DC}\)
Cho Δ ABC trên BC lấy D , E sao cho \(\overrightarrow{BD}=\frac{3}{5}\overrightarrow{BC},\overrightarrow{4EA}+2\overrightarrow{EB}+\overrightarrow{3EC}=\overrightarrow{0}\)
a, Tính \(\overrightarrow{ED}\) theo \(\overrightarrow{EB},\overrightarrow{EC}\)
b, A, E , D thẳng hàng
Cho tứ giác ABCD có I , J là trung điểm của BC và CD . C/m \(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{JA}+\overrightarrow{DA}=\frac{3}{2}\overrightarrow{DB}\)