Xét ΔDEM và ΔBEA có
\(\widehat{DEM}=\widehat{BEA}\)(hai góc đối đỉnh)
\(\widehat{DME}=\widehat{BAE}\)(hai góc so le trong, DM//AB)
Do đó: ΔDEM\(\sim\)ΔBEA(g-g)
Suy ra: \(\dfrac{EM}{EA}=\dfrac{DM}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(1)
Xét ΔMFC và ΔBFA có
\(\widehat{MFC}=\widehat{BFA}\)(hai góc đối đỉnh)
\(\widehat{MCF}=\widehat{BAF}\)(hai góc so le trong, AB//MC)
Do đó: ΔMFC\(\sim\)ΔBFA(g-g)
Suy ra: \(\dfrac{FM}{FB}=\dfrac{CM}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)(2)
Ta có: M là trung điểm của CD(gt)
nên CM=DM(3)
Từ (1), (2) và (3) suy ra \(\dfrac{EM}{EA}=\dfrac{FM}{FB}\)
Xét ΔMAB có
E\(\in\)AM(gt)
\(F\in BM\)(gt)
\(\dfrac{EM}{EA}=\dfrac{FM}{FB}\)(cmt)
Do đó: EF//AB(Định lí Ta lét đảo)