Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON
Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON
cho hình thang abcd có đáy lớn cd .qua a kẻ đường thẳng song song với bc cắt dc tại k.qua b kẻ dường thẳng song song với ad cắt dc tại i.bi cắt ac tại f;ak cắt bd tại e.cm:
a; tam giác afb đồng dạng với tam giác cfi
Cho hình thang ABCD (AB // CD, AB < CD). Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) DK = CI
b) EF // CD
c) AB2 = CD.EF
Cho hình thang ABCd (AB//CD). Một đường thẳng song song với hai đáy cắt cạnh bên AD,BC theo thứ tự ở E,F
Chứng minh rằn:\(\frac{AE}{AD}+\frac{CF}{BC}=1\)
Bài 15: Cho tam giác ABC có AD là phân giác của góc BAC (D ϵ BC). Từ D kẻ các đường thẳng song song với AB và AC, chúng cắt AC, AB tại E và F.
a) Chứng minh tứ giác AEDF là hình thoi.
b) Trên tia AB lấy điểm G sao cho F là trung điểm của AG. Chứng minh tứ giác EFGD là hình bình hành.
c) Gọi I là điểm đối xứng của D qua F, tia IA cắt tia DE tại K. Gọi O là giao điểm của AD và EF. Chứng minh: G đối xứng với K qua O.
Cho O là trung điểm của đoạn Trên cùng một nửa mặt phẳng có bờ là đường thẳng vẽ tia cùng vuông góc với AB. Trên tia lấy điểm C (khác A), qua kẻ đường thẳng vuông góc với cắt tia By tại D.
a,Chứng minh
b,Kẻ vuông góc CD tại M. Chứng minh
c,Từ M kẻ vuông góc AB tại I. Chứng minh đi qua trung điểm MH.
câu 1: tìm x biết
(2x - 1)2 - (x+3)2 = 0
câu 2: Cho tam giác ABC vuông tại A ( AB<AC), đường cao AH ( H ϵ BC). Kẻ HE vuông góc với AB ( E ϵ BC ) và HF vuông góc với AC ( F ϵ AC).
a) chứng minh tứ giác AEHF là hình chữ nhật
b) gọi O là giao điểm của AH và EF, M là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC tại N. Chứng minh ON//AC và chứng minh tứ giác AONM là hình bình hành.
c) Gọi EF cắt NM tại I. Chứng minh tam giác ONI cân
Cho hình thang ABCD ( AB//CD ) có CD = 12cm . E,F lần lượt là trung điểm AD , BC và đoạn thẳng EF có độ dài là 10cm . Độ dài đoạn thẳng AB là :
A : 2
B : 4
C : 8
D : 11
Cho hình chữ nhật ABCD. Gọi E là điểm đối xứng với A qua D.
a) Chứng minh rằng tứ giác DBCE là hình bình hành
b) Gọi F là điểm đối xứng với C qua D. Chứng minh rằng tứ giác ACEF là hình thoi.
c) Vẽ EH vuông góc với AC tại H, EH cắt CD tại K, AK cắt CE tại I. Gọi M là giao điểm của AI và BD. Chứng minh IM.BD = DI.BI.
cho tam giác ABC góc A bằng 90 độ . gọi E,G,F là trung điểm của AB, BC, AC . từ E kẻ đường song song với BF , đường thẳng này cắt GF tại I
a) tứ giác AEGF là hình bình hành
b) tứ giác BEIF là hình bình hành
c) tứ giác AGCI là hình thoi