Bài 4: Đường trung bình của tam giác, hình thang

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho hình thang ABCD (AB // CD), E là trung điểm của AD, F là trung điểm của BC. Đường thẳng EF cắt BD ở I, cắt AC ở K

a) Chứng minh rằng AK = KC, BI = ID

b) Cho AB = 6cm, CD = 10 cm. Tính các độ dài EI, KF, IK ?

BW_P&A
21 tháng 4 2017 lúc 14:33

a) Vì EA = ED, FB = FC (gt)

Nên EF là đường trung bình của hình thang ABCD.

Do đó: EF // AB // CD

∆ABC có BF = FC và FK // AB

nên: AK = KC

∆ABD có AE = ED và EI // AB

nên: BI = ID

b) Vi EF là đường trung bình của hình thang ABCD.

nên EF = \(\dfrac{AB+CD}{2}\) = \(\dfrac{6+10}{2}=8\)

EI là đường trung bình của ∆ABD nên \(EI=\dfrac{1}{2}AB=\dfrac{1}{2}.6=3\left(cm\right)\)

KF là đường trung bình của ∆ABC nên \(KF=\dfrac{1}{2}AB=\dfrac{1}{2}.6=3\left(cm\right)\)

Lại có EF = EI + IK + KF

nên IK = EF - (EI + KF) = 8 - (3 + 3) = 2 (cm)

Black Pink
9 tháng 7 2019 lúc 8:55

Giải bài 28 trang 80 Toán 8 Tập 1 | Giải bài tập Toán 8

a) + Hình thang ABCD có EA = ED, FB = FC (gt)

⇒ EF là đường trung bình của hình thang ABCD.

⇒ EF // AB // CD

+ ΔABC có BF = FC (gt) và FK // AB (cmt)

⇒ AK = KC

+ ΔABD có: AE = ED (gt) và EI // AB (cmt)

⇒ BI = ID

b) + Vì EF là đường trung bình của hình thang ABCD.

⇒ EF = (AB + CD)/2 = (6 + 10)/2 = 8cm.

+ ΔABD có AE = ED, DI = IB

⇒ EI là đường trung bình của ΔABD

⇒ EI = AB/2 = 6/2 = 3(cm)

+ ΔABC có CF = BF, CK = AK

⇒ KF là đường trung bình của ΔABC

⇒ KF = AB /2 = 6/2 = 3cm

+ Lại có: EI + IK + KF = EF

⇒ IK = EF – EI – KF = 8 – 3 – 3 = 2cm


Các câu hỏi tương tự
Ruby Tran
Xem chi tiết
Nhu Quynh
Xem chi tiết
Trần Lê Gia Bảo
Xem chi tiết
Anh Duy
Xem chi tiết
Trần Ngọc Phương Thảo
Xem chi tiết
tnguyenxuanthao
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
hồng nguyễn
Xem chi tiết
huỳnh thị ngọc ngân
Xem chi tiết