Ôn tập cuối năm phần hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
qwwwerrrr

cho hình chữ nhật ABCD. kẻ AH⊥BD ( H∈BD)

a) chứng minh ΔHDA đồng dạng với ΔADB

b) Chứng minh AD2=DB.HD

c) Tia phân giác góc ADB cắt AH và AB lần lượt tại M và K chứng minh AK.AM=BK.HM

d) gọi O là giao điểm của AC và BD. Lấy P ϵ AC, dựng hình chữ nhật AEPF ( E ϵAB, F∈AD), BF cắt DE ở Q. chứng minh rằng : EF//DB và 3 điểm A, Q, O thẳng hàng

Nguyễn Lê Phước Thịnh
6 tháng 7 2022 lúc 14:14

a: Xét ΔHDA vuông tại H và ΔADB vuông tại A có

góc HDA chung

Do đo: ΔHDA đồng dạng với ΔADB

=>DA/DA=DA/DB(2)

b: Xét ΔABD vuông tại A có AH là đường cao

nên \(DA^2=DH\cdot DB\)

c: Xét ΔDHA có DM là phân giác

nên HM/AM=DH/DA(1)

Xét ΔDAB có DK là đường phân giác

nên AK/BK=DA/DB(3)

Từ (1), (2)và (3) suy ra HM/AM=AK/BK

hay \(HM\cdot BK=AK\cdot AM\)


Các câu hỏi tương tự
Phan Thị Hương Ly
Xem chi tiết
Aurora
Xem chi tiết
Ctuu
Xem chi tiết
Linh Chii
Xem chi tiết
Tên Tớ
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
SuSu
Xem chi tiết
Bảo
Xem chi tiết
Bảo
Xem chi tiết