a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
\(\widehat{BAH}\) chung
Do đó: ΔABH\(\sim\)ΔACB
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
\(\widehat{BAH}\) chung
Do đó: ΔABH\(\sim\)ΔACB
Cho tam giác ABC vuông tại B ( AB nhỏ hơn BC),đường cao BH k.
a) Chứng minh rằng: tam giác ABH đồng dạng với tam giác ACB
b) Chứng ming rằng: BH^2 =AH.CH
C) Gọi D là trung điểm của AC ,E là trung điểm của AB .Qua A vẽ tia Ax song song đường thẳng BH , tia Ax cắt đường thẳng DE tại F . Đường thẳng FC cắt BH tại O . CMR: O là trung điểm BH
Cho tam giác ABC (AB<AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh ΔBFH đồng dạng với ΔCEH và FA.BH=FH.AC
b) Gọi I là trung điểm của BC và K là điểm đối xứng với H qua I. Chứng minh ΔAKC đồng dạng ΔAFH.
c) AK cắt HC tại O. Lấy điểm thuộc đoạn thẳng AC sao cho EF // OM. Chứng minh HM vuông góc với AD.
Câu a có thể không cần nhưng mình xin đáp án câu b, c với ạ.
Cho tam giác ABC vuông tại A (AB<AC). Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N. Gọi D là điểm đối xứng của I qua N.
a) Tứ giác ADCI là hình gì?
b) Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC=1/3
c) Cho AB=12cm, BC=20cm. tính diện tích hình ADCI.
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và Bd cắt nhau tại O , Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và Bd cắt nhau tại O , Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và Bd cắt nhau tại O , Qua D kẻ đường tahwngr s vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và Bd cắt nhau tại O , Qua D kẻ đường tahwngr s vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy
Cho tam giác ABC vuông tại A, vẽ đường cao AH.
a/Chứng minh tam giác ABH đồng dạng tam giác CAB. Suy ra AB2 = BH.BC
b/ Gọi N là trung điểm AB. Kẻ đường thẳng qua N và vuông góc với AB cắt BC tại . Chứng minh: tam giác ABH đồng dạng tam giác MBN. Suy ra 2BN2 = BH.BM
c/ Đường tẳng vuông góc BC vẽ từ B cắt đường thẳng MN tại I và cắt AC tại K; cắt AG tại O. Chứng minh: ON//BC.