a: \(DH=\dfrac{12^2}{16}=9\left(cm\right)\)
AB=căn 16*25=20(cm)
=>DC=20cm
AD=căn (25^2-20^2)=15cm
=>BC=15cm
b: Vì góc BAD+góc BCD=180 độ
nên ABCD là tứ giác nội tiếp
Bán kính là AC/2=20/2=10
a: \(DH=\dfrac{12^2}{16}=9\left(cm\right)\)
AB=căn 16*25=20(cm)
=>DC=20cm
AD=căn (25^2-20^2)=15cm
=>BC=15cm
b: Vì góc BAD+góc BCD=180 độ
nên ABCD là tứ giác nội tiếp
Bán kính là AC/2=20/2=10
cho hình thoi ABCD, 2 đường chéo cắt nhau tại O. Gọi H, I, K, L lần lượt là hình chiếu của O trên các cạnh AB, BC, CD, DA.
a, Chứng minh 4 điểm H, I , K, L cùng thuộc một đường tròn.
b, tính bán kính của đường tròn a biết góc BAD = 60o ,AC= 4 cm
Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Qua A kẻ tiếp tuyến AB, AC với dường tròn (O). M là 1 điểm trên dây BC, đường thẳng kẻ qua M vuông góc với OM cắt tia AB, AC lần lượt ở D và E. Chứng minh:
a, 4 điểm B, D, M, O cùng thuộc 1 đường tròn
b, Tứ giác OMEC nội tiếp
c, MD = ME
Cho tam giác ABC nhọn. Vẽ đường cao BD và CE của tam giác, biết D thuộc cạnh AC, E thuộc cạnh AB. CE và BD cắt nhau tại H. Gọi I, K lần lượt là trung điểm của BC và AH. Chứng minh rằng: a) Bốn điểm B, C, E, D cùng thuộc đường tròn tâm I. I. b) Tứ giác IEKD nội tiếp được trong một đường tròn.
Cho nửa đường tròn đường kính BC=2R. Từ điểm A trên nửa đường tròn vẽ AH vuông góc BC ( H thuộc BC ) Nửa đường tròn đường kính BH và CH lần lượt có tâm là M và N cắt AB, AC thứ tự tại D, E
a) ADHE là hình gì? Tính DE biết R=25 cm, CH=40 cm
b) CM: BDEC là tứ giác nội tiếp
c) CM: DE là tiếp tuyến chung của 2 nửa đường tròn tâm M và N
d) Xét vị trí điểm A để diện tích DEMN đạt giá trị lớn nhất. Tìm giá trị đó.
Cho đường tròn (O,R), dây BC cố định không đi qua O. Lấy điểm A. Kẻ BD vuông góc AC tại D, CE vuông góc AB tại E. Gọi giao điểm của BD và CE là H. Tia BD cắt đường tròn (O) tại điểm thứ hai là F (F khác B)
a, Chứng minh bốn điểm B,D,C,E cùng thuộc 1 đường tròn
b, chứng minh CA là tia phân giác của HCF
Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C.
a) Chứng minh rằng CB là tiếp tuyến của đường tòn.
b) Vẽ đường kính BD. Chứng minh AD // OH
c) Cho bán kính của đường tròn bằng 15cm, AB=24cm. Tính độ dài
Cho đường tròn tâm O, điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Gọi I là giao điểm của OA và BC.
a) Chứng minh tam giác ABC cân.
b) Chứng minh OA vuông góc với BC.
c) Tính độ dài BI, biết OB = 6 cm; OA = 8 cm. d) Chứng minh rằng : AB 2 – OC 2 = AI 2 – IO2
CHo tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R) và H là trực tâm của tam giác ABC. Đường cao AD cắt đường tròn tại điểm M khác A. Vẽ đường kính AN. a) CM: BH // CN
b) CM: DH = DM
c) Biết AH = R. Tính góc BAC
(Giải câu c thôi)
Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm.Vẽ đường cao AH.
a) Tính độ dài đường cao AH.
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt đường tròn (B) tại điểm thứ hai là D.
Chứng minh CD là tiếp tuyến của đường tròn (B).
c) Gọi K là hình chiếu của D trên đường kính AE của đường tròn tâm B. Nối CE cắt DK tại L.
Chứng minh LD = LK