\(\Delta SAB=\Delta SAD\Rightarrow SB=SD\Rightarrow\Delta SBD\) cân
Mà \(\widehat{SBD}=60^0\Rightarrow\Delta SBD\) đều
\(\Rightarrow SB=SD=BD=a\sqrt{2}\)
\(\Rightarrow SA=\sqrt{SD^2-AD^2}=a\)
\(\Rightarrow V=\frac{1}{3}a^3\)
\(\Delta SAB=\Delta SAD\Rightarrow SB=SD\Rightarrow\Delta SBD\) cân
Mà \(\widehat{SBD}=60^0\Rightarrow\Delta SBD\) đều
\(\Rightarrow SB=SD=BD=a\sqrt{2}\)
\(\Rightarrow SA=\sqrt{SD^2-AD^2}=a\)
\(\Rightarrow V=\frac{1}{3}a^3\)
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Cạnh bên SA vuông góc với đáy, \(\widehat{BAD}=120^0\). M là trung đierm của cạnh BC và \(\widehat{SMA=45^0}\). Tính thể tích khối chóp S.ABCD và tính khoảng cách từ D đến mặt phẳng (SBC) theo a
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC=60°. Cạnh bên SA vuông góc với mặt đáy và cạnh bên SC tạo với mặt đáy một góc 60°. Gọi I là trung điểm BC, H là hình chiếu vuông góc của A lên SI. Tính thể tích khối chóp S.ABCD và khoảng cách từ điểm H đến (SCD) theo a.
Cho hình chóp S.ABCD có đáy hình vuông tâm O và AB=a. Góc giữa SC và (SBD) bằng 30°, SA=SC, SB=SD. Thể tích khối chóp S.ABCD ?
Cho hình chóp S>ABCD có đáy ABCD là hình vuông cạnh a, mặt phẳng (SAB) vuông góc với mặt phẳng đáy, SA=SB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 độ. Tính thể tích khối chóp S.SBCD theo a.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a SA vuông góc với ABCD Gọi P là trung điểm cạnh SD, PC = a căn(3). Tính thể tích hình chóp
Cho hình chóp S.ABCD có đáy ABCD là hình thang, \(\widehat{BAD}=\widehat{ABC}=90^o;AB=BC=a;AD=2a\), SA vuông góc với đáy và SA=2a. Gọi M, N lần lượt là trung điểm của SA và SD. Chứng minh rằng BCNM là hình chữ nhật và tính thể tích của khối chóp S.BCNM theo a
Cho hình chóp S.ABCD có ABCD là hình thoi tâm O cạnh a, góc ABC = 60 độ. Hình chiếu vuông góc của S lên (ABCD) là trung điểm của OB, SC tạo với (ABCD) góc 60 độ. Gọi M là trung điểm CD. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng AM và SB
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=2a, \(\widehat{BAC}=60^0\). Cạnh bên SA vuông góc với đáy và \(SA=a\sqrt{3}\). Gọi M là trung điểm cạnh AB.
Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SB và CM
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA=a,SB=a\sqrt{3}\) và mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC
Tính theo a thể tích của khối chóp S.BMDN và tính cosin của góc giữa 2 đường thẳng SM và DN
Cho hình chóp SABCD có đáy ABCD là hình vuông cãnh 4a, SA vuông góc với đáy. Góc giữa SC và mp (ABCD) bằng 600. Gọi M là trung điểm BC, N thuộc AD sao cho DN = a. Tính thể tích khối chóp SABM và khoảng cách giữa 2 đường thẳng SB, MN
Mong mọi người giải nhanh giúp tớ