Hình chiếu của SC lên (ABCD) là AC.
⇒ (SC, (ABCD)) = (SC,AC) = \(\widehat{SCA}\)
Ta có: AC = a√2
Xét tam SCA vuông tại A, có: \(tan\widehat{SCA}=\dfrac{SA}{SC}=\sqrt{3}\)
\(\Rightarrow\widehat{SCA}=60^o\)
Hình chiếu của SC lên (ABCD) là AC.
⇒ (SC, (ABCD)) = (SC,AC) = \(\widehat{SCA}\)
Ta có: AC = a√2
Xét tam SCA vuông tại A, có: \(tan\widehat{SCA}=\dfrac{SA}{SC}=\sqrt{3}\)
\(\Rightarrow\widehat{SCA}=60^o\)
Cho lưới ô vuông như hình vẽ, có một con kiến di chuyển từ điểm A đến điểm B bằng cách di chuyển trên cạnh để đi qua các điểm nút của lưới ( điểm nút là đỉnh của các hình vuông nhỏ), mỗi bước nó di chuyển xuống dưới hoặc di chuyển sang phải để đến điểm nút gần nhất. Biết rằng nếu đến điểm C thì kiến sẽ bị ăn thịt. Giả sử kiến di chuyển một cách ngẫu nhiên và nó không biết tại C sẽ gặp nguy hiểm. Tính xác suất để kiến đến được điểm B.
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a/ chứng minh tam giác ADB đồng dạng tam giác AEC
b/ chứng minh HE. HC = HD. HB
Biết \(\xrightarrow[x->1]{lim}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\dfrac{\sqrt{a}}{b}\)
với a,b là số tự nhiên và \(\dfrac{a}{b}\) là phân số tối giản. Tính a-b
Cho a và b là các số thực khác 0 Biết \(\lim\limits_{x\rightarrow-\infty}\left(ax+b-\sqrt{x^2-6x+2}\right)=5\). Số lớn hơn trong hai số a và b là
A/ 4 B. 3 C.2 D. 1
trên đoạn [0;2023] có bao nhiêu giá trị nguyên của tham số a sao cho lim(\(\sqrt{9n^2+10n}-a.n\))=-\(\infty\)
Tìm giới hạn lim un
a. \(u_n=\left(2-3n\right)^4\left(n+1\right)^3\)
b.\(u_n=\sqrt[3]{n+4}-\sqrt[3]{n+1}\)
c.\(u_n=\sqrt[3]{8n^3+3n^2+4}-2n+6\)
d. \(\sqrt[3]{8n^3+3n^2-2}+\sqrt[3]{5n^2-8n^3}\)
Help me ! Gợi ý cho mik cx đc ạ . Tks mng
Cho a>1 và dãy số (xn) xác định như sau:
x1=a; xn+1= \(\sqrt{a.x_n^2+3x_n+4}\) với n=1,2,...
a. Tìm limxn.
b. Tìm a đề xn+1/xn =4.
cho \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x+1}-2}{x^2-1}=\dfrac{a}{b},voi\dfrac{a}{b}\) là phân số tối giản . tính \(a^2+b\)
6) Tính giới hạn :
\(a)\lim\limits_{x\rightarrow\infty}\left(x+\sqrt[3]{3x^2-x^3}\right)\)
\(b)\lim\limits_{x\rightarrow\infty}\sqrt{x^2+1}-\sqrt[3]{x^3-1}\)