Ta có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\)
Mà \(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\)
b/ Do \(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)
Lại có \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\)
c/ Gọi K là trung điểm BC \(\Rightarrow IK//AC\Rightarrow AC//\left(SIK\right)\)
\(\Rightarrow\left(SI;AC\right)=\widehat{SIK}\) nếu \(\widehat{SIK}\le90^{ }\) hoặc \(180^0-\widehat{SIK}\) nếu \(\widehat{SIK}>90^0\)
\(SI=\sqrt{SA^2+IA^2}=\sqrt{SA^2+\left(\frac{AB}{2}\right)^2}=\frac{a\sqrt{5}}{2}\)
\(IK=\frac{1}{2}AC=\frac{1}{2}\sqrt{AB^2+BC^2}=\frac{a\sqrt{5}}{2}\)
\(SB=\sqrt{SA^2+AB^2}=a\sqrt{2}\)
\(\Rightarrow SK=\sqrt{SB^2+BK^2}=\sqrt{SB^2+\left(\frac{BC}{2}\right)^2}=a\sqrt{3}\)
\(cos\widehat{SIK}=\frac{SI^2+IK^2-SK^2}{2SI.IK}=-\frac{1}{5}\Rightarrow\widehat{SIK}\approx101^032'\)
\(\Rightarrow\widehat{\left(SI,AC\right)=180^0-\widehat{SIK}}\approx78^028'\)