a.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AM\)
Mà \(AM\perp SB\)
\(\Rightarrow AM\perp\left(SBC\right)\Rightarrow AM\perp SC\) (1)
Hoàn toàn tương tự, ta có \(AN\perp\left(SCD\right)\Rightarrow AN\perp SC\) (2)
(1);(2) \(\Rightarrow SC\perp\left(AMN\right)\)
b.
\(SB=SD=\sqrt{SA^2+AB^2}=a\sqrt{13}\)
Áp dụng hệ thức lượng trong tam giác vuông SAB:
\(AM=\dfrac{SA.AB}{SB}=\dfrac{6a\sqrt{13}}{13}\)
Hệ thức lượng tam giác vuông SAD:
\(AN=\dfrac{SA.AD}{SD}=\dfrac{6a\sqrt{13}}{13}\)
\(\Rightarrow AM=AN\Rightarrow SM=SN=\sqrt{SA^2-AM^2}=\dfrac{9a\sqrt{13}}{13}\)
\(\Rightarrow\dfrac{SM}{SB}=\dfrac{SN}{SD}\Rightarrow MN||BD\Rightarrow\dfrac{MN}{BD}=\dfrac{SM}{SB}\)
\(\Rightarrow MN=\dfrac{SM.BD}{SB}=\dfrac{18a\sqrt{2}}{13}\)
\(\Rightarrow AM+AN+MN=...\)