Cho hinh chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng \(\left(\alpha\right)\) cắt SA, SB, SC, SD tại A', B', C', D'. CMR: \(\dfrac{SA}{SA'}+\dfrac{SB}{SB'}=\dfrac{SC}{SC'}+\dfrac{SD}{SD'}\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi H là trung điểm của AB. Tính cosin của góc giữa SC và (SHD)
Cho hinh chóp SABCD đáy là hvuong cạnh a, M và N là trung điểm AB, AD. CM giao vs CN tại H, SH vuông góc vs đáy, SH=2a√3. Tính
a) d(CD, SA)
b) d(H, (SCD))
Giúp e vs ạ bai này giải bằng phương pháp tọa độ nhưng e ko lam đc. E cam ơn moi ng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho HB=2HA. Cạnh SC tạo với đáy 1 góc 60độ. Khoảng cách từ trung điểm K của HC đến mặt phẳng SCD là?
1, Lăng trụ tam giác đều abca'b'c' có [(a'bc), (abc)] =30°. M thuộc Â', AB=a√3. Tính thể tích MBC'B
2, SABC đáy là tam giác vuông tại B, SA vuông góc vs đáy AB=BC=a, SA=a√2. (Soha) qua A vuông góc vs SC cắt SB tại M. Tính diện tích tam giác AMN
1 tìm tập nghiệm S của bất pt \(9^x-26.6^x+4^x>0\)
A S=R B S=\(R\backslash\left\{0\right\}\) C \(S=\left(0;+\infty\right)\) D [\(0;+\infty\) )
2 Tập nghiệm bất pt \(3^{1-x}+2.\left(\sqrt{3}\right)^{2x}\le7\) có dạng [a,b] với a<b. Gía trị của biểu thức P= b+a.\(log_23\)
A 0 B 1 C.2 D. 2\(log_23\)
3 tổng các nghiệm nguyên nhỏ hơn 5 của bất pt \(2^x\ge3-\frac{3}{2^x}\) là
4 có bao nhiêu giá trị nguyên của x thỏa mãn bất pt \(x^{log_2x+4\le32}\) là
5 tập ngiệm của bất pt \(x^{lnx}+e^{ln^2x}\le2e^4\) có dạng [a;b]. Tính a.b
A a.b=\(e^4\) B a.b=e C a.b=\(e^3\) D a.b=1
6 nghiệm của bất bất pt \(2^x-2\sqrt{2^x+1}>2\) là
A x<3 B x<0 C x>3 và x<0 D x>3
7 Tập nghiệm của bất pt \(4^x-3.2^{x+1}+5\le0\)
A [0;5] B (0;\(log_25\) ) C [0;\(log_25\)] D \(x\le0\) và \(x\ge log_25\)
8 Cho \(\Delta\) ABC vuông tại A, AB=2a và C=3a . Khi quay \(\Delta\)ABC quanh cạnh góc vuông AC thì đường gấp khúc ABC tạo thành một hình nón. Diện tích toàn phần của hình nón bằng
9 cho tam giác ABC vuông tại A , AB=3cm, AC=4cm . Gọi V1 là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AB và V2 là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AC . Khi đó , tỷ số \(\frac{V1}{V2}\) bằng
10 Cho hình chữ nhật ABCD có AB=1 và AD=2. Gọi M,N lần lượ là rung điểm của AB và BC. Quay hình chữ nhật đó xung quanh trục MN , ta dc một hình trụ, Diện tích toàn phần của hình trụ bằng
11 cho tam giác ABC có ABC =\(45^0\) ,ACB =\(30^0\) ,AB=2. quay tam giác ABC xung quanh cạnh BC ta dc khối ròn xoay có thể tích V bằng
12 Cho hình chóp S.ABCD có đáy là hình tang vuông tại A,B .Biết SA vuông góc với (ABCD) ,AB=BC=3a,AD=6a, SA=\(a\sqrt{7}\).Gọi E là trung điểm AD.Tính bán kính mặt cầu đi qua các điểm S,A,B,C,E
13 tam giác ABC vuông cân ở đỉnh A có cạnh huyền bằng 1 . Quay tam giác ABC quanh trục BC thì được khối tròn xoay có thể tích bằng
14 Cho hình chóp tam giác đều S.ABC. Gọi V1 là thể tích khối nón có đỉnh S và có đường tròn đáy là đường tròn nội tiếp tam giác ABC . Gọi V2 là hình nón có đỉnh S và có đường tròn là đường tròn ngoại tiếp tam giác ABC tính tỉ số \(\frac{V1}{V2}\)
15 xét \(\int_0^{\frac{\pi}{2}}sinx.e^{cosx}dx\) nếu đặt t= cosx thì \(\int_0^{\frac{\pi}{2}}sinx.e^{cosx}dx\) bằng
16 xét \(\int_0^2x.4^{x^2}dx\) nếu đặ t =x^2 thì \(\int_0^2x.4^{x^2}dx\) bằng
17 xét \(\int_0^1\left(x+1\right)e^{x^2+2x}\) dx nếu đặt t =\(x^2+2x\) thì \(\int_0^1\left(x+1\right)e^{x^2+2x}dx\) bằng
18 hàm số nào sau đây k phải là mộ nguyên hàm của hàm số y =\(x.e^{x^2}\)
A F(x)= \(\frac{1}{2}e^x+2\) B F(x) =\(\frac{1}{2}\left(e^{x^2}+5\right)\) C F (X) =\(\frac{1}{2}e^{x^2}+C\) D F(x)= \(\frac{1}{2}\left(2-e^{x^2}\right)\)
19 biết F(x) là một nguyên hàm của f(x) = \(sin^4x.cosx\) . Hỏi F(x) có hàm số là
20 cho \(\int_0^8f\left(x\right)dx=24\) . Tính \(\int_0^2f\left(4x\right)dx\)
I TẬP: Bài 1: Trong không gian Oxyz cho A(0;1;2) ; B( 2;3;1) ; C(2;2;-1) a) Tính . b) Chứng tỏ rằng OABC là một hình chữ nhật tính diện tích hình chữ nhật đó. c) Viết phương trình mặt phẳng (ABC). d) Cho S(0;0;5).Chứng tỏ rằng S.OABC là hình chóp.Tính thể tích hình chóp.
Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B', C' lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q (Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa.
1. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(0;2), B(4;2). Tìm điểm M trên đoạn thẳng AB để parabol (P) đỉnh O và đi qua điểm M chia tam giác vuông OAB thành hai phần có diện tích bằng nhau.
2. Cho hình phẳng (H ) giới hạn bởi các đường \(y=x^2,y=2x\) . Gọi S là tập hợp các giá trị của tham số thực k để đường thẳng x = k2 chia hình phẳng (H) thành hai phần có diện tích bằng nhau. Hỏi tập hợp S có bao nhiêu phần tử?