\(\frac{BB'}{SB}=\frac{CC'}{SC}=\frac{1}{3}\Rightarrow B'C'//BC\Rightarrow B'C'//\left(ABC\right)\)
\(\frac{AA'}{SA}=\frac{CC'}{SC}=\frac{1}{3}\Rightarrow A'C'//AC\Rightarrow A'C'//\left(ABC\right)\)
\(\frac{BB'}{SB}=\frac{CC'}{SC}=\frac{1}{3}\Rightarrow B'C'//BC\Rightarrow B'C'//\left(ABC\right)\)
\(\frac{AA'}{SA}=\frac{CC'}{SC}=\frac{1}{3}\Rightarrow A'C'//AC\Rightarrow A'C'//\left(ABC\right)\)
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi G là trọng tâm tam giác SAC. Mặt phẳng (a) qua G cắt SA; SB; SC; SD lần lượt tại A'B'C'D'.
1) Tính \(\dfrac{SA}{SA'}+\dfrac{SC}{SC'}-\left(\dfrac{SB}{SB'}-\dfrac{SD}{SD'}\right)\)
2 ) Tính \(\dfrac{SA}{SA'}+\dfrac{SB}{SB'}+\dfrac{SC}{SC'}+\dfrac{SD}{SD'}\)
cho tứ diện ABCD, có tam giác ABC vuông tại B, SA vuông góc với mặp phẳng (ABC). M là chân đường vuông góc hạ từ A đến SB. Trên SC lấy điểm N sao cho SM/SB=SN/SC. CMR:
a) BC vuông góc với (SAB)
b) AM vuông góc với (SBC)
c) AN vuông góc với SB
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SA, E là điểm trên đoạn SB sao cho \(SE=\dfrac{2}{3}SB\). Thiết diện của mp đi qua M, song song với DE và SC với S.ABCD là hình gì?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.Gọi M là trung điểm của SA và E là trung điểm của SB; P là điểm thuộc cạnh SC sao cho SC=3SP. Tìm giao điểm của DB và mặt phẳng (MPE)
Cho hình chóp SABCD có đáy ABCD là hcn . SA vuông (ABCD) . Cạnh AB=SA=a , AD=2a
a) cmr BC vuông (SAB)
b) gọi M là trung điểm SB chứng minh AM vuông góc SC
C) Tính góc giữa SB mpABC
cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. trên cạnh SA lấy điểm M sao cho SM=1/2 SA. chứng minh rằng SC song song với mp(MBD)
Cho hình chóp S.ABCD có đáy ABCD là hbh tâm O. Gọi M là trung điểm BC. P thuộc SA sao cho AP=2SP
a, Tìm giao điểm của PM và (SBD). Chứng minh SC//(MDP)
b, (Q) đi qua P và song song với AD, SB. Tìm thiết diện của chóp cắt bởi (Q)
Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của AB, CD.
a) Chứng minh MN // (SBC); MN // (SAD).
b) Gọi I là trung điểm SA. Tìm giao điểm K của (INM) và SD.
c) Chứng minh: SB, SC // (IMN).
d) Gọi H là trung điểm IO. Chứng minh HK // (SBC).
Cho hình chóp S.ABCD , tam giác ABC vuông góc tại C , SA vuông góc với (ABC ) a. CMR : BC vuông góc (SAC) b. Gọi E là hình chiếu của A lê SC . CMR : AE vuông góc ( SBC )