HA\(=2HB\Rightarrow HA=\dfrac{2a}{3}\)
V\(=\dfrac{1}{12}\)
HA\(=2HB\Rightarrow HA=\dfrac{2a}{3}\)
V\(=\dfrac{1}{12}\)
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là H thuộc cạnh AB sao cho HA=2HB. Góc giữa 2 đường thẳng SC và mặt phẳng (ABC) bằng 60 độ. Tính thể tích khối chóp A.ABC và tính khoảng cách giữa 2 đường thẳng SA và BC theo a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = 2a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm của BC, mặt phẳng (SAC) tạo với đáy (ABC) một góc 600 . Tính thể tích hình chóp S.ABC và khoảng cách từ điểm I đến mặt phẳng (SAC) theo a, trong đó I là trung điểm SB.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A. Mặt phẳng bên ABC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt phẳng đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SA, BC
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=BC=2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC). Gọi M là trung điểm của AM; Mặt phẳng qua SM và song song với B, cắt AC tại N. Biết góc giữa 2 mặt phẳng (SBC) và (ABC) bằng 60 độ. Tính thể tích của khối chóp S.BCNM và khoảng cách giữa 2 đường thẳng AB và SN theo a.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AC = 2a, góc ACB = 30 độ. Hình chiếu vuông góc H của đỉnh S trên mặt đáy là trung điểm của cạnh AC và SH = \(\sqrt{2}a\). Tính theo a thể tích khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, với ; AC=\(\frac{a}{2}\) BC a . Hai mặt phẳng (SAB) và (SAC) cùng tạo với mặt đáy (ABC) góc 600 . Tính thể tích khối chóp S.ABC và khoảng cách từ B tới mặt phẳng (SAC) theo a biết mặt phẳng (SBC) vuông góc với đáy (ABC).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=a, SA vuông góc với mặt phẳng (ABC), góc giữa 2 mặt phẳng (SBC) và (ABC) bằng 30 độ. Gọi M là trung điểm của cạnh SC. Tính thể tích khối chóp S.ABM theo a.
Cho hình chóp S.ABC co tam giác ABC vuông tại A,AB=Ac=a,I là trung điểm của SC,hình chiếu vuông góc của S lên mặt phẳng (ABC) là trung điểm H của BC,mặt phẳng (SAB) tạo với đáy 1 góc 60độ.Tính thể tích của khối chóp S.ABC và tính khoảng cách từ điểm I đến mặt phẳng (SAB) theo a. Ai giúp mình với :(
Cho hình chóp S.ABC có đáy tam giác ABC là tam giác vuông tại B, \(BA=3a,BC=4a\), mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết \(SB=2a\sqrt{3},\widehat{SBC}=30^o\).
Tính thể tích của khối chóp S>ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a