d( A;( SCD)) = d( H;( SCD)) = \(\frac{\sqrt[a]{21}}{7}\)
d( A;( SCD)) = d( H;( SCD)) = \(\frac{\sqrt[a]{21}}{7}\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi H là trung điểm của AB. Tính cosin của góc giữa SC và (SHD)
Trong không gian Oxyz, cho hai đường thẳng d1: \(\dfrac{x-1}{1}=\dfrac{y-2}{1}=\dfrac{z}{2}\)và d2: \(\dfrac{x-1}{1}=\dfrac{y-3}{2}=\dfrac{z-4}{3}\) và mp (P): 2x+2y+2z-5=0. Điểm M(a;b;c) thuộc mp (P) sao cho tổng khoảng cách từ M đến hai đường thẳng d1 và d2 đạt min. Tính a + 2b +c.
Cho hinh chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng \(\left(\alpha\right)\) cắt SA, SB, SC, SD tại A', B', C', D'. CMR: \(\dfrac{SA}{SA'}+\dfrac{SB}{SB'}=\dfrac{SC}{SC'}+\dfrac{SD}{SD'}\)
Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B', C' lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q (Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa.
Bài 3. Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B', C' lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q (Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa.Bài 5. Cho tam giác ABC (AB<AC) nội tiếp (O), M là trung điểm BC. Các điểm N, P thuộc đoạn BC sao cho MN=MP. Các đường thẳng AM, AN, AP cắt (O) lần lượt tại D, E, F. Chứng minh rằng BC, EF và tiếp tuyến của (O) tại D đồng quy.Bài 6. Cho tam giác ABC ngoại tiếp đường tròn (I). Gọi D, E, F lần lượt là các tiếp điểm của (I) với các cạnh BC, CA, AB . Các điểm M, N thuộc (I) sao choEM||FN||BC. Gọi P, Q lần lượt là các giao điểm của BM, CN với (I). Chứng minh BC, PE, QF đồng quy.Bài 7. Cho tam giác ABC nội tiếp trong đường tròn (O) có A cố định và B, C thay đổi trên (O) sao cho BC luôn song song với mộtđường thẳng cố định cho trước. Các tiếp tuyến của (O) tại B và C cắt nhau tại K. Gọi M là trung điểm BC ,N là giao điểm của AM với (O). Chứng minh rằng đường thẳng KN luôn đi qua một điểm cố định.Bài 8. Cho tam giác nhọn ABC nội tiếp (O) (BC < 2R). Gọi D, E, F lần lượt là trung điểm BC, CA, AB và P, M, N lần lượt là hình chiếu vuông góc của A, B, C lên BC, DF, DE. Các tiếp tuyến tại M và N của đường tròn (PMN) cắt nhau tại một điểm S. Chứng minh S luôn thuộc một đường thẳng cố định khi điểm A di động trên (O).Bài 9. Cho điểm P nằm ngoài đường tròn (O). PC là tiếp tuyến của(O), PAB là cát tuyến, CD là đường kính của (O). Gọi E=OP giao BD . Chứng minh rằng CE⊥CA.Bài 10. Cho tứ giác điều hòa ABCD nội tiếp (O), M là trung điểmBD P=AM giao (O), Q=M giao (O).a) Chứng minh rằng AC AM , là hai đường đẳng giác của góc BAD.b) Chứng minh rằng CP||BD, AQ||BD.
1 trong không gian với trục tọa độ oxyz, cho điểm I(1;3;-2) và đường thẳng d \(\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\) viết pt mặt cầu (s) có tâm I và cắt d tại hai điểm phân biệt A Và B sao cho AB có độ dài bằng 4
2 trong không gian hệ trục tọa độ oxyz, tâm và bán kính mặt cầu (S) có pt(x-2)^2+(y+2)^+z^2=121 là
3 cho pt \(x^4+x^2-6=0\) .Pt đã cho có nghiệm trên tập số phức là
4 trong không gian với hệ tạo độ oxyz, cho điểm M(2;3;-1) và đường thảng d \(\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z-5}{2}\). tọa độ hình chiếu vuong góc của M trên( d)là
5 trong không gian oxyz, cho mp(p) 2x+3y+z-11=0. mặt cầu(S) có tâm I (1;-2;1) cà tiếp xúc zới (p) tại H . tọa độ điểm H là
6 pt mặt cầu có tâm I(1;2;3) và tiếp xúc với mp (oxz) là
7 trong khong gian với hệ dợ độ oxyz, mp(Q) có p x-2y+3z-1=0 trong các vecto sau, vecto nào ko phải là một vecto pháp tuyến của mp(Q)
A \(\overline{n}\)(3;-6;9) B (-2;4;-6) C(1;-4;9) D(1;-2-3)
Trong không gian Oxy, cho các điểm A (1;2;0), B (2;0;2), C (2;-1;3) và D (1;1;3). Đường thẳng đi qua C và vuông góc với mặt phẳng (ABD) có phương trình là ?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng ABCD là điểm H thuộc cạnh AB sao cho HB=2HA. Cạnh SC tạo với đáy 1 góc 60độ. Khoảng cách từ trung điểm K của HC đến mặt phẳng SCD là?