Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A. Mặt phẳng bên ABC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt phẳng đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SA, BC
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là H thuộc cạnh AB sao cho HA=2HB. Góc giữa 2 đường thẳng SC và mặt phẳng (ABC) bằng 60 độ. Tính thể tích khối chóp A.ABC và tính khoảng cách giữa 2 đường thẳng SA và BC theo a
Cho hình chóp SABCD có đáy là hình vuông cạnh a, đường cao SA=2a. Gọi (P) là mặt phẳng qua A và vuông góc với SC. Tính diện tích của hình chóp cắt bởi mặt phẳng (P)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=a, SA vuông góc với mặt phẳng (ABC), góc giữa 2 mặt phẳng (SBC) và (ABC) bằng 30 độ. Gọi M là trung điểm của cạnh SC. Tính thể tích khối chóp S.ABM theo a.
Cho hình chóp tam giác đều S.ABC với SA=2a, AB = a. Gọi H là hình chiếu vuông góc của A trên cạnh SC. Chứng minh SC vuông góc với mặt phẳng(ABH). Tính thể tích của khối chóp S.ABH theo a
Cho hình chóp S>ABCD có đáy ABCD là hình vuông cạnh a, mặt phẳng (SAB) vuông góc với mặt phẳng đáy, SA=SB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 độ. Tính thể tích khối chóp S.SBCD theo a.
Cho hình chóp S.ABC có đáy là tam giác vuông tại A. \(\widehat{ABC}=30^o\), SBC là tam giác đều cạnh a và mặt bên SBC vuông góc với đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB)
Cho hình chóp đều S.ABC, có đáy là tam giác đều cạnh bằng a. gọi M, N lần lượt là trung điểm của các cạnh SB, SC. Biết mặt phẳng (AMN) vuông góc với mặt phẳng (SBC). Tính thể tích của khối chóp A.BCNM.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = 2a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm của BC, mặt phẳng (SAC) tạo với đáy (ABC) một góc 600 . Tính thể tích hình chóp S.ABC và khoảng cách từ điểm I đến mặt phẳng (SAC) theo a, trong đó I là trung điểm SB.