a, Vì tứ giác ABCD là hình bình hành
⇒ \(\left\{{}\begin{matrix}\text{AB // CD}\\\text{AD // BC}\end{matrix}\right.\)
ΔDEA có BF // AD (BC // AD)
⇒ ΔBEF ~ ΔDEA (đpcm)
b, ΔDEG có AB // DG (AB // CD)
⇒ ΔABE ~ ΔGDE
⇒ \(\frac{AE}{EG}=\frac{EB}{ED}\)
⇒ EG . EB = ED . EA (đpcm)
c, Vì ΔBEF ~ ΔDEA
⇒ \(\frac{BE}{DE}=\frac{EF}{AE}\)(1)
Vì ΔABE ~ ΔGDE
⇒ \(\frac{BE}{DE}=\frac{AE}{EG}\)(2)
Từ (1), (2) ⇒ \(\frac{EF}{AE}=\frac{AE}{EG}\)
⇒ AE2 = EF . EG (đpcm)