\(\Leftrightarrow3\overrightarrow{AM}=2\overrightarrow{AC}\)
\(\Leftrightarrow\overrightarrow{AM}=\frac{2}{3}\overrightarrow{AC}\)
Vậy M là điểm nằm trên đoạn thẳng AC sao cho \(AM=\frac{2}{3}AC\)
\(\Leftrightarrow3\overrightarrow{AM}=2\overrightarrow{AC}\)
\(\Leftrightarrow\overrightarrow{AM}=\frac{2}{3}\overrightarrow{AC}\)
Vậy M là điểm nằm trên đoạn thẳng AC sao cho \(AM=\frac{2}{3}AC\)
Cho tam giác ABC và M là trung điểm BC.a) Chứng minh rằng: \(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{BM}+\overrightarrow{AC}\)b) Cho hai điểm E,K thỏa mãn: \(\overrightarrow{EA}=-3\overrightarrow{EM}\) và \(5\overrightarrow{AK}=3\overrightarrow{AC}\). Chứng minh ba điểm B,E,K thẳng hàng.
Cho hình vuông ABCD, I là trung điểm BC, M là điểm trên AB sao cho AM=2AB, N là điểm thỏa \(\overrightarrow{AN}=2\overrightarrow{AC}\)
Tìm tập hợp E thỏa mãn \(\left|\overrightarrow{EA}+\overrightarrow{EC}+\overrightarrow{ED}\right|=\left|\overrightarrow{EA}+\overrightarrow{EC}-2\overrightarrow{ED}\right|\)
Cho tam giác ABC, điểm D xác định bởi \(\overrightarrow{AD}=\frac{2}{5}\overrightarrow{AC}\), M là trung điểm BD, biểu thị \(\overrightarrow{AM}=m\overrightarrow{AB}+n\overrightarrow{AC}\). Giá trị m + n = ...
Cho tam giác ABC, M là một điểm trên cạnh BC sao cho MB=2MC
1) Biểu thị \(\overrightarrow{AM}\) theo \(\overrightarrow{AB}\) và\(\overrightarrow{AC}\)
2) Chứng minh \(\overrightarrow{v}=\overrightarrow{NB}+\overrightarrow{NC}-2\overrightarrow{NA}\) không phụ thuộc vào vị trí điểm N. Hãy dựng \(\overrightarrow{AD}=\overrightarrow{v}\)
3) Gọi K là trung điểm cạnh AC, điểm I nằm trên đoạn AM sao cho \(\overrightarrow{AI}=x\overrightarrow{AM}\). Tìm số x để ba điểm B, I, K thẳng hàng.
4) Cho điểm K di động thỏa mãn: \(\overrightarrow{KE}=2\overrightarrow{KA}+2\overrightarrow{KB}-\overrightarrow{KC}\). Chứng minh KE đi qua một điểm cố định
Bài 1: Cho 4 điểm A B C D. Chứng minh nếu \(\overrightarrow{AB}=\overrightarrow{DC}\) thì \(\overrightarrow{AD}=\overrightarrow{BC}\)
Bài 2: CMR nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì \(\overrightarrow{AC}=\overrightarrow{BC}\)
Bài 3: Cho tam giác ABC. Lần lượt vẽ các điểm M N P thỏa mãn \(\overrightarrow{AM}=\overrightarrow{BA},\overrightarrow{BN}=\overrightarrow{CB},\overrightarrow{CP}=\overrightarrow{AC}\). Gọi I là một điểm bất kì, chứng minh \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\)\(\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)
cho hình bình hành ABCD tâm O . gọi I,J lần lượt là các điểm thỏa mãn \(\overrightarrow{IA}+3\overrightarrow{IB}=\overrightarrow{0}\), \(\overrightarrow{JA}=3\overrightarrow{JD}\). phân tích \(\overrightarrow{IJ}và\overrightarrow{IO}\) theo \(\overrightarrow{AB},\overrightarrow{AD}\)
Cho tam giác ABC, hai điểm M,N thỏa: \(\overrightarrow{BC}+\overrightarrow{MA}=\overrightarrow{0}\); \(\overrightarrow{AB}-\overrightarrow{NA}-3\overrightarrow{AC}=\overrightarrow{0}\)
CMR: MN//AC
Cho tứ giác ABCD , M thuộc AB , N thuộc CD sao cho
\(3\overrightarrow{AM}=2\overrightarrow{AB}\)
\(3\overrightarrow{DN}=2\overrightarrow{DC}\)
Biểu diễn \(\overrightarrow{MN}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\)
1. Cho hình chữ nhật ABCD , AB = 3 , AD = 4 . Tính
a. \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|\)
b. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|\)
c. \(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{CA}\right|\)