Lời giải:
Áp dụng định lý Pitago và các tính chất của hình bình hành như $AB=CD; AD=BC$ ta có:
\(AC^2=AF^2+FC^2=AF^2+DC^2-DF^2=(AF-DF)(AF+DF)+DC^2\)
\(=AD(AF+DF)+AB^2\)
\(=AD.AF+AD.DF+AB(AE-BE)\)
\(=(AD.AF+AB.AE)+(AD.DF-AB.BE)\)
\(=(AD.AF+AB.AE)+(BC.DF-CD.BE)(*)\)
Xét tam giác $CBE$ và $CDF$ có:
\(\widehat{CEB}=\widehat{CFD}=90^0\)
\(\widehat{CBE}=180^0-\widehat{ABC}=180^0-\widehat{ADC}=\widehat{CDF}\)
\(\Rightarrow \triangle CBE\sim \triangle CDF(g.g)\Rightarrow \frac{CB}{CD}=\frac{BE}{DF}\)
\(\Rightarrow BC.DF=BE.CD\Rightarrow BC.DF-CD.BE=0(**)\)
Từ \((*); (**)\Rightarrow AC^2=AD.AF+AB.AE\)
Ta có đpcm.