góc AED+góc AEC=180 độ
góc AEC+góc ABC=180 độ
Do đó: góc AED=góc ABC
=>góc AED=góc ADE
=>AD=AE
góc AED+góc AEC=180 độ
góc AEC+góc ABC=180 độ
Do đó: góc AED=góc ABC
=>góc AED=góc ADE
=>AD=AE
Cho hình bình hành ABCD (AB>CD), điểm E bất kì thuộc AD, tia phân giác góc ABC cắt CE tại I, AI cắt CD tại F. Chứng minh rằng: AE = CF.
cho hình vuông ABCD , cạnh có độ dài bằng a . E là 1 điểm di động trên CD(E khác C,D).AE cắt BC tại F ,kẻ đường thẳng vuông góc với AE tại A cắt CD tại K
a,Chứng minh:1/AF^2+1/AE^2=không đổi
b,chứng minh : cosAKE=sinEKF.cosEFK+sinEFK.cosEKF
cho hình thoi ABCD có \(\widehat{B}=60^0\) .Đường thẳng qua D cắt AB,AC kéo dài lần lượt tại E và F.gọi M là giao điểm của AF và EC.Chứng minh AD tiếp xúc với đường tròn ngoại tiếp MDF
Cho hai đường tròn (O;R) và (O' ;R') cắt nhau tại 2 điểm phân biệt A và B. Từ một điểm C thay đổi trên tia đối của tia AB. Vẽ các tiếp tuyến CD, CE với đường tròn (O) (D,E là các tiếp điểm và E nằm trong đường tròn (O')).Hai đường thẳng AD và AE cắt (O') lần lượt tại M và N (M,N khác với điểm A). Đường thẳng DE cắt MN tại I. Chứng minh rằng:
a, MI.BE=BI.AE
b, Khi điểm C thay đổi thì đường DE luôn đi qua một điểm cố định
Cho tam giác ABC nhọn nội tiếp (O) đường cao AD, BE cắt nhau tại H, AD cắt đường tròn tại A, ( A ≠ A, )
a) chứng minh H đối xứng A, qua BC
b) gọi K là điểm đối xứng của A qua O. Chứng minh BHCK là hình bình hành
c) Gọi G là trọng tâm tam giác ABC. chứng minh 3 điểm H,G,O thẳng hàng
Cho hình vuong ABCD. Lấy điểm E trên BC, tia AE cắt đường thẳng CD tại G. Trên nửa mp bờ là đường thẳng AE chứa tia AD, kẻ AF vuông góc với AE và AF=AE.
a) Chứng minh 3 điểm F,D,C thẳng hàng
b) \(\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{AG^2}\)
Cho nửa đường tròn tâm O, đường kính AD. Trên nửa đường tròn lấy điểm B, C ( B nằm trên cung AC). Gọi AC cắt BD tại E, kẻ EF vuông góc với AD(F thuộc AD). Chứng minh:
a) AB,DC,EF đồng quy
b) Tính AB.AP+CD.CP theo R của đường tròn tâm O đường kính AD
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O); AD cắt đường tròn (O) tại E (E khác D).
a) Chứng minh: OA BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn
b) Chứng minh: CD // OA và AH.AO= AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
Cho đường tròn (O) đường kính AB. Vẽ dây CD vuông góc với AB tại điểm E trên AB. Gọi H là hình chiếu của điểm E trên AD. Chứng minh rằng đường thẳng HE đi qua trung điểm M của BC.