Ôn tập hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Ngọc Thảo

Cho hệ phương trình \(\left\{{}\begin{matrix}kx-y=-5\\x+2y=0\end{matrix}\right.\)( I )

a) Giải hệ phương trình ( I ) với k = 2

b) Tìm k để HPT ( I ) một nghiệm duy nhất ( 2 ; -1 )

c) Với giá trị nào của k thì HPT ( I ) có một nghiệm duy nhất ? Vô nghiệm ? Có vô số nghiệm

Giải đúng mk tick

Nguyễn Ngọc Lộc
19 tháng 3 2020 lúc 9:56

a, Thay k = 2 vào hệ phương trình ( I ) ta được :\(\left\{{}\begin{matrix}2x-y=-5\\x+2y=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}-4y-y=-5\\x=-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=1\\x=-2.1=-2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là \(S=\left\{-2;1\right\}\) với giá trị của k là 2 .

b, - Để hệ phương trình có duy nhất 1 nghiệm thì : \(\frac{k}{1}\ne-\frac{1}{2}\)

=> \(k\ne-\frac{1}{2}\)

- Thay x = 2 và y =-1 vào hệ phương trình ( I ) ta được :

\(\left\{{}\begin{matrix}2k+1=-5\\2-2=0\end{matrix}\right.\)

=> \(k=-3\left(TM\right)\)

Vậy với hệ phương trình có nghiệm là ( 2: -1 ) thì k có giá trị là -3 .

c, - Để hệ phương trình có nghiệm duy nhất thì : \(\frac{k}{1}\ne-\frac{1}{2}\)

- Để hệ phương trình vô nghiệm thì : \(\frac{k}{1}=-\frac{1}{2}\ne-\frac{5}{0}\)

=> \(k=-\frac{1}{2}\)

- Để hệ phương trình có vô số nghiệm thì : \(\frac{k}{1}=-\frac{1}{2}=-\frac{5}{0}\) ( vô lý )

Vậy không có k thỏa mãn để hệ phương trình vô số nghiệm .

Khách vãng lai đã xóa
Trần Ngọc Thảo
19 tháng 3 2020 lúc 9:26
Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Ngọc Thảo
Xem chi tiết
Lô Vỹ Vy Vy
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Tuấn Kiên Phạm
Xem chi tiết
Tạ Thúy Hường
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết
Trần Ngọc Thảo
Xem chi tiết