ta có : \(\left\{{}\begin{matrix}mx+y=7\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7-mx\\2x-7+mx=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=7-mx\\x=\dfrac{11-mx}{2}\end{matrix}\right.\)
\(\Rightarrow P=x^2+y^2=\dfrac{\left(11-mx\right)^2}{4}+\left(7-mx\right)^2\)
\(=\dfrac{121-22mx+m^2x^2}{4}+49-14mx+m^2x^2\)
\(=\dfrac{5m^2x^2-78mx+317}{4}\)
\(=\dfrac{5m^2x^2-2.\sqrt{5}mx+\dfrac{78}{2\sqrt{5}}+\dfrac{1521}{5}+\dfrac{64}{5}}{4}\)
\(=\dfrac{\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}}{4}\)
ta có : \(P\) nhỏ nhất khi \(\dfrac{\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}}{4}\) nhỏ nhất
\(\Leftrightarrow\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}\) nhỏ nhấtta có : \(\left(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}\right)^2+\dfrac{64}{5}\ge\dfrac{64}{5}\forall mx\)
khi \(\sqrt{5}mx-\dfrac{78}{2\sqrt{5}}=0\Leftrightarrow m=\dfrac{39}{5x}\)
khi đó ta có : \(P=\dfrac{\dfrac{64}{5}}{4}=\dfrac{16}{5}\)
vậy .............................................................................................