Cho hcn ABCD có dtich là 2020. Gọi M là trung điểm AB, và điểm N thuộc cạnh AD sao cho AN=2AD. CM và BN cắt nhau tại K. Tính dtich tam giác KBC
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC . Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC . Hai dây AN và CM cắt nhau tại điểm I . Dây MN cắt cạnh AB và BC lần lượt tại các điểm H và K
1. Chứng minh 4 điểm C , N , K . I cùng thuộc 1 đường tròn
2. Chứng minh NB^2 = NK.NM
Cho tam giác ABC nhọn (AB<AC), có các đường cao BN và CM cắt nhau tại H. Gọi O là trung điểm của BC. Chứng minh rằng :
a) Bốn điểm B,M,N,C thuộc cùng một đường tròn .
b)MN<BC
c)ON là tiếp tuyến của đường tròn có đường kính AH
cầu mong mọi người làm giúp mk bài này mk sắp thi cuối kì
Cho đường tròn (O)có hai đường kính AB, CD vuông góc với nhau. Gọi M là một điểm di động trên đoạn OB (M không thuộc O, B) . Tia CM cắt BD tại P và đường tròn tại N (N không thuộc C). Gọi Q là giao
điểm của AN và CD
a) Chứng minh tứ giác DQPN nội tiếp và PQ vuông góc với CD
b) Chứng minh tam giác ACQ đồng dạng tam giác CQN và diện tích tử giác ACMQ không đổi khi M thay đổi trên OB
c) Chứng minh tâm đường tròn ngoại tiếp tam giác CON luôn nằm trên một đường thẳng cố định khi M thay đổi trên OB
1) Cho tg nhọn ABC (AB< AC) nội tiếp đường tròn (O). Đường cao AD, BE, CF cắt nhau tại H a) Cm: BFHD nội tiếp b) Gọi M là điểm đối xứng của H qua AC. Cm M thuộc (O) và BH.HM=2FH.CM c) Tia MD căt (O) tại N (N khác M), gọi I là giao điểm FD, AN. Cm: IF=IN
Cho hcn ABCD có AB<AD. Trên AD lấy E sao cho BE=BC. Tia phân giác của \(\widehat{CBE}\) cắt CD tại F. Đường thẳng EF cắt đường thẳng AB tại M.
1) Đường thẳng CM cắt đường thẳng BD tại N. C/m \(\widehat{BNM}=90^o\)
2) Gọi EI là phân giác của \(\widehat{BEM}\left(I\in BM\right)\). C/m \(\dfrac{1}{2AE^2}=\dfrac{1}{EI^2}-\dfrac{1}{EM.EB}\)
cho tam giác ABC nội tiếp đường tròn (O), kẻ đường cao BE và CF cắt nhau tại H. Gọi D là giao của AH và BC. Kẻ DK vuông FC với K thuộc FC. Gọi M là trung điểm FD. CM OA vuông MK
b, b) gọi I là Tđ của AO kẻ dây AE của đường tròn tâm I , đường kính AO sao cho AE//BC .Đường thẳng HE cắt MN tại K . CM IK vuông góc với BC
Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH và O là trung điểm cạnh BC. Đường tròn tâm I đường kính AH cắt AB,AC thứ tự tại M và N. OA và MN cắt nhau tại D.
Cho AB=3 và AC=4 .Tính bán kính đường tròn ngoại tiếp tam giác BMN