Cho đường tròn (O), dây AB cố định, điểm C thay đổi trên cung lớn AB sao cho tam giác ABC nhọn. Gọi M, N lần lượt là điểm chính giữa các cung AC và AB. Gọi I là giao điểm của BM và CN. Gọi H, K lần lượt là giao điểm của MN với AC và AB. 1) Chứng minh: tam giác NIB là tam giác cân 2)Gọi D là giao điểm của CN với AB. Chứng minh: HI//AB và CH/CA=CA/AD. 3)Xác định vị trí điểm C trên cung lớn AB để diện tích tứ giác AIBN lớn nhất
Cho tam giác ABC cân đỉnh A nội tiếp trong đường tròn tâm O. Gọi M, N, P lần lượt là các điểm chỉnh giữa các cung nhỏ AB, BC, CA; BP cắt AN tại I; MN cắt AB tại E. Chứng minh rằng:
1. Tứ giác BCPM là hình thang cân; góc ABN có số đo bằng 900.
2. Tam giác BIN cân; EI // BC.
Cho (O) và dây BC cố định,không đi qua tâm.Điểm A thay đổi trên cung lớn BC(A khác B,C), điểm I là điểm chính giữa cung nhỏ BC. Gọi H, K lần lượt là hình chiếu vuông góc của I trên các đường thẳng AB, AC. Chứng minh:
a) Bốn điểm A, H, I, K cùng thuộc một đường tròn.
b) ΔIHK là Δ cân và Góc HIK = Góc BIC.
c) Khi A thay đổi trên cung lớn BC thì đường thẳng HK luôn đi qua một điểm cố định.
8/75
cho đường tròn O đường kính AB , điểm C nằm trên đường tròn (C khác A và B) . gọi M,N lần lượt là điểm chính giữa của cung AC nhỏ và cung BC nhỏ . gọi E là giao điểm của ON và CB . từ N vẽ NK vuông góc AC ( K thuộc AC)
A/ chứng minh tứ giác ECKN là hình chữ nhật và suy ra KN là tiếp tuyến tại N của đường tròn O
B/ vẽ đường kinh ND của đường tròn O . chứng minh tứ giác KEDA là hình bình hành
C/ gọi I là giao điểm của MN và KO . chứng minh (căn 2) /NI = 1/NK + 1/NO
thankkkkkkkkkkkkkkkkkkkk
Cho đường tròn (O) và 2 dây MA, MB vuông góc với nhau. Gọi I và K lần lượt là điểm chính giữa của các cung nhỏ MA và MB. Gọi P là giao điểm AK và BI.
a) Chứng minh rằng: 3 điểm A, O, B thẳng hàng?
b) Chứng minh rằng: P là tâm đường tròn nội tiếp MAB?
c) Giả sử MA=12cm; MB=16cm. Tính bán kính của đường tròn nội tiếp MAB?
bài 8/77
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ,các đường cao AI < BK của tam giác ABC cắt nhau tại H ( I thuộc BC , K thuộc AC ) .AI vad BK cắt đường tròn O lần lượt tại D và E
A/chứng minh tứ giác ABIK nội tiếp
B/ gọi M là trung điểm của DE . chứng minh 3 điểm O,M,C thẳng hàng
C/chứng mình IK song song ED
thankkkkk
Cho ∆ABC nhọn có AB < AC. Vẽ đường tròn tâm O đường kính BC cắt các cạnh AB, AC lần lượt tại E và D . Gọi H là giao điểm BD và CE; AH cắt BC tại I.
a) Chứng minh AI vuông góc với BC
b) Vẽ AM, AN tiếp xúc (O) tại M và N. Chứng minh IA là tia phân giác góc \(\widehat{MIN}\)
c) Chứng minh ba điểm M, H , N thẳng hàng.
Cho tam giác nhọn ABC nội tiếp đường tròn ( O ; R ) Hai đường cao AD BE ( D thuộc BC E thuộc AC ) lần lượt cắt đường tròn (O) tại các điểm thứ hai là M và N
a) Chứng minh: CDHE,AEDB là tứ giác nội tiếp đường tròn
b) Chứng minh MN // DE
c) Cho (O) và dây AB cố định Chứng minh rẳng độ dài bán kính đường tròn ngoại tiếp tam giác CDE luôn không đổi khi điểm C di chuyển trên cung lớn
Cho đường tròn tâm O, đường kính AB=2R, điểm C thuộc đường tròn O mà góc ABC bằng 30 độ, vẽ dây CD vuông góc với AB tại H, gọi M là điểm chính giữa của cung BC, I là giao điểm của BC và OM. a) chứng minh HCIO nội tiếp b) Gọi K là giao điểm của AM và BC. Chứng minh KC=2KB